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SECTION 1

INTRODUCTION

The increasing use of' composite materials in structural applications, such as

autolobiles, aircraft and space structures, is chiracterized by their high strengtlh

(sti ffness)-to-weig ht ratio, low maintenance costs and the flexibility in tai lorii the

stiffness and strength to design requirements. As ihP r reinforced laminates l,\e

played a more important role in high performance structures for the last 2 decades, the

need to have accurate stress and failure analysis become apparent for design or repair

purpose.

Recent development in the analysis of composite laminate coupons under uniform

extension indicated that the high interlaminar stresses near the free-edge are mainly

responsible for delamination failure [1]. Before delamination can be predicted on the

basis of a stress-based failure criterion, it is essential that a highly reliable estimate of

interlaminar stresses be :ivailable for the given situation. Ilowever, it has been

difficult to obtain solutions for the stress field because of 'he anisotropV as well as

heterogeneity of the material, and the difficulty of satisfying traction-free boundary

condition in a solution procedure based on the displacement formulation.

Considerable research efforts have been devoted to the study of such free-edge

delamination problem. These can be classified as analytical and numerical approaches.

The analytical solutions are based upon simple elastic approximation [2,31 modified

higher order theory [4], Galerkin method [5], Perturbation technique [6], Boundary layer



theory [7]. Reissner's variational principle [8,9], (lobail-local model [10] etc., while the

numerical solutions are based on finite difference [11,12] and finite element methods

including displacement [13-16], stress [17] and hybrid [18,19] formulations. It was

found that some of the solution techniques were only applicable under certain

conditions. For this reason, a complete stress distribution was usually hard to obtain.

Although results calculated from various approaches have demonstrated similarities in

some cases, discrepancies do e.\ist in the NIagnitude as v ell as sign of the computed

interlaminar stresses near the free-edge of laminate cupon0s. One example is shovn in

Figure (1) in vhich significant difference \ias obser\ed for or, stress distribution al,,

the interface of [45/-45], laminate based on various solution techniques [19].

Apparently, one possible source of these discrepancies is that, in these methods, the

continuity conditions for displacements and tractions across laminate interfaces along

with traction-free boundary condition along free-edges characteristic of the real life

situation, can only be approximated to a limited extent. However, the credibility of

various methods in predicting the or distribution shown in Figure (1) will be judged

later.

Due to the presence of singular interlaminar stresses near the laminate

free-boundary, edge delaminalion associated with various types of damage modes, such

as fiber breakage, matrix cracking, fiber-matrix debonding, etc., are observed to occur

under incremental loading. l)elamination can be simply interpreted as separation of'

laminae from each other in the laminate, and can occur under static, impact or fatigue

loading conditions. For the case of a symmetric laminate under inplane loading, the

strain components are essentially uniform throughout the laminate. Due to the

free-edge effect the out-of-plane interlaminar stresses, however, may be sufficiently

2
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Figure 1: Comparison of Z-stress at the Interface of 45/-45 Lavers



large to damage the matrix material, which bonds adjacent plies together, and cause

delamination.

Two generic approaches are available for investigating damage modes in composite

materials. The first approach involves a detailed stress analysis used in conjunction

with a failure criterion to predict, and measure experimentally, the onset of fiber

fracture, matrix cracking and delamination. This can be referred to as the strength

characierization approch. In the second approach. classical linear elastic fracture

mechanics can be applied to characterize miatri. cracking and the delamination process.

l)elamination has usuallV been isolated from the other damage modes and treated as a

stable crack growth [20-25], and the basic character of the strain energy release rate

has been widely used to predict the kinematic behavior of delamination. llowever,

experiments [26] have indicated that delamination usually does not produce a clean

surface between the adjacent plies; instead it is associated with other types of damage

such as matrix cracking and fiber breakage. Thus, use of linear elastic fracture

mechanics approach to study delamination growth seems to be inappropriate.

Meanwhile, due to the irregular occurrence of various damage modes in the form of

different cracking patterns, use of anisotropic strength and failure criteria is apparently

superior to the fracture mechanic approach for the determination of damage

characteristics such as type of failure nmode. dainage zone and crack growth behavior

including delamination.

The primary objective of the present research was to develop a finite element

model with a sound theoretical background, which could accurately and efficiently

predict the complete stress field of the free-edge stress problem in composite laminates

without resorting to any special singularity elements. The next was to incorporate

4



various commonly known macroscopic failure criteria into the finite element

computational procedure to evaluate the performance of various criteria on the

determination of onset of matrix cracking and delamination in the composite laminate

specimens under uniform extension. In Section I1, a review of analytical and

numerical methods related to the free-edge stress problem is presented. Section I11

contains the theoretical foundation of the finite element formulation including basic

variational principles. Section IV describes a continuous strain finite element model

based on a compatible cubic interpolation function. A continuous traction ttnite

element procedure for analysis of free-edge delamination specimens is developed in

Section V. In Section VI, analysis of free-edge effect as well as onset of' delaminalion

in various types of laminated specimens are presented. Section V1 contains discussion

of the proposed finite element models for analysis of free-edge delamination specimens.

Derivation of Felippa's compatible cubic interpolation function is summarized in the

Appendix.



SECTION II

REVIEW OF EARLIER WORK

2.1 Introduction

lhe problem of calculatini interlaminar tresses near the free-edges of it layered

composite under uniform inplane extension has been investigated by many researchers.

Most approximate solutions [2-7,10-19] are based uplon elasticity theory and treat the

problem as a generalized plane strain case. This is because first of all, the classical

and even many of the refined laminate theories, are single-layer theories which do not

account for local effects such as geometric and material discontinuities, and the presence

of a free-edge; secondly, use of discrete layered theory is very uneconomical and

impractical from the computational stand point. An effective modulus formulation [27]

in which each layer is characterized as a homogeneous, anisotropic material has been

widely used [1-191. A complex state of stress with high gradients has been noticed

[191 in the neighborhood of the free-edge due to the presence of interlaminar stresses to

keep the laminae in a state of equilibrium. In order to have a pretise prediction of

delamination behavior, an accurate estimate for the near-field stress distribution is

essential. However, due to the singular nature of the boundary-layer stress field [19],

an exact solution is currently unavailable, and discrepancies exist in the magnitude and

even the sign of the computed interlaminar stresses near the free-edge (Figure 1) based

on various approximate theories.

6



2.2 Analytical Approach

Except for Pagano's [8] approximate theory based on Reissner's variational principle

and Pagano and Soni's [10] Global-local model, most analytical solutions discussed in

this section are obtained by using various engineering methods to solve the

displacement-equilibrium equations under certain assumptions. Thus, these can be

regarded as approximate solutions based upon elasticity theory.

2.2.1 Approximate Elasticity Solution

In\estiga tions of the free edge problem \%,ks c;,rried OUt by Puppo and Elvensen [2]

using a composite model essentially consisting of a set of anisotropic layers separated

by isotropic adhesive layers. It was assumed that the isotropic layers, developed only

interlaminar shear stresses, acting as an adhesive between the anisotropic layers. It was

reported that a sharp rise of the interlaminar shear stress could be observed in finite

wxidth laminates. lowever, the simplicity of these elastic formulations precluded

calculation of the transverse normal stress, and the problem became more complicated

when more layers were involved.

In an attempt to approximate the interlaminar normal stress, a simplified formula

was developed by Pagano and Pipes [1]. The strategy was to use solutions along the

longitudinal mid -plane of the laminate based upon classical laminated plate theory, one

could then compute the force and moment resultants caused by the interlaminar stresses

on any plane z=constant through consideration of static equilibrium. The maximum

interlaminar normal stress at the free-edge could then be expressed in terms of the

transverse stress in the y-direction calculated from the laminated plate theory.

Another approximate elasticity solution proposed by Pipes and Pagano [3] was based

upon displacement-equilibrium equations for an anisotropic elastic medium. Assuming

7



the transverse stresses in the Y-, z- directions to \anish. the equations \ere wxritten in

terms of* the single variable U (axial displacement function). [his yielded components

of displacement, strain as well as remaining stress fields in the form of

sinusoidal-hyperbolic series. However, violation of stress equilibrium in the transverse

directions as well as neglect of the interlaminar normal stress constituted major

drawbacks of this scheme.

2.2.2 Modified Higher Order Theory

Paano [4] deri\ed another approximt1e method for determination of distribution (,I

the inierlaminar normal stress along the mid-plane of a symmetric, fimite \\ idth

laminate. The approach was based upon a modified version of a higher order theOr\

proposed by Whitney and Sun [281. which recognized the effect of shear deformation

through the inplane rotations as well as the thickness strain implemented in the

assumed displacement field. Ilowever, like the approximate theories discussed

previously, none of them were able to determine the complete stress field near the

free-edge.

2.2.3 Galerkin's Method

Due to the fact that high stress gradients occurring near the free-edge are difficult

to estimate by numerical approaches, Want, and l)ickson [5] applied the extended

Galerkin's approach, in which interlaminar stresses and displacements of each layer

satisfying geometrica' boundary conditions were represented as -series of Legendre

polynomials. The final solution was reached by requiring the satisfaction of continuity

conditions at each interface as well as stress boundary conditions at exterior planes.

Due to t) completeness of L.egendre polynomials, convergence of solutions could be

expected.
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2.2.4 Perturbation Technique

In an effort to obtain more accurate free-edge stress intensities, a perturbation

technique was applied by l-lsu and llerakovich [61 to solve the three coupled

dimensionless partial differential equations based upon a displacement formulation of

the elastic problem. It showed that the perturbation solution provided a smooth

continuous stress distribution in the vicinity of the free-edge. However, this solution

had the limitation that the shear stress distribution was a function of both laminate

thickness-to-width ratio and a prollen)-depcndent parameter. Although the latter could

be chosen such that the rlmaximul values of shear stress field did not exceed elastic

limits, the accuracy of the calculated stresses was suspect.

2.2.5 Boundary Layer Theory

A boundary layer theory for laminated composites in plane stress was developed

by Tang and Levy [7] from the three-dimensional theory of anisotropic elasticity. By

expanding the stresses, displacements, body forces and surface tractions in power series

of the half-thickness of a lamina in the equations of equilibrium, compatibility and

boundary conditions, a sequence of systems of equations was obtained. The complete

solution was obtained by combining solutions of the interior domain based on the

classical lamination theory and those from boundary layer and matching a set of

appropriate boundary conditions. This formulation indeed provided a way to obtain

analytical solution for estimating interlaminar normal as well as shear stress

distribution.



2.2.6 Reissner's Variational Principle

In order to have displacement as well as stress continuity, a mixed formulation is

sometimes used. Unlike the elastic approximations discussed previously, Pagano [8]

developed an approximate theory for a general composite laminate based upon an

application of Reissner's variational principle. In this theory, the inplane stresses are

considered linear in the thickness coordinate while the transverse stresses derived from

equilibrium consideration are cubic. If a laminate or a single lamina is viewed as an

assembly of N sheets, each having a finite thickness and required to satisfy force and

moment equilibrium, the analysis led to a set of 23N algebraic and ordinary

differential equations which had to be solved simultaneously. Based upon the

assumption that the stress field is independent of the longitudinal axis, Pagano [9]

further specialized the theory to the free-edge problem by reducing the stress field

determination to the solution of a one-dimensional problem. Despite the relative

accuracy of this theory resulting from the improvement of smoothness for both

displacement and traction fields at interfaces between adjacent layers, a major drawback

was that its application was limited at most to six sublayers.

2.2.7 Global-local Model

Pagano [10] introduced a global-local model, which was able to define detailed

response functions in a particular, predetermined region of interest while representing

the remainder of the domain by effective properties, that reduced the number of

variables in a given problem. In this model, for the global region of the laminate,

potential energy has been utilized, and the displacement components were based upon

the assumption given by Whitney and Sun [281 The Reissner variational principle

described in [8], however, was applied for the local region in which a thickness
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distribution of stress field satisfying equililbriu m equation within each laver w as

assumed. A variational principle was then used to derive the governing equations of

equilibrium for the whole system. It was reported that the global-local model could

effectively solve the same class of free-edge stress problem as described in [8] and had

wider range of applicability.

2.3 Finite Difference Method

2.3.1 Pesudo Two-dimensional Analysis

Pipes and Paigano [11] used the classical t heor% ul linear elasticity to formulatt 1hC

problem of free-edge delamination of a strip under uiflOrml1 axial strain. Allow in, for

material symmetries and uniform extension, the transverse components of displacement

were assumed to be independent of the longitudinal coordinate. The three coupled

elliptic equations for the displacement functions were solved using a finite difference

solution technique to approximate the interlaminar stresses. Delamination was assumed

to be primarily due to the high shear stress near the free-edge and the interlaminar

stress field was found to be an edge effect which was restricted to a boundary region

approximately equal to the laminate thickness.

2.3.2 Three-dimensional Analysis

A three-dimensional finite difference analysis was carried out by Altus, Rotem and

Shmueli [121 to examine the free-edge stress field. The displacement equilibrium

equation was solved by using central difference method while for displacement or

traction-free boundary conditions as well as interfacial continuity conditions, either

forward or backward difference scheme was applied. Convergence of the solution was

I]



expected prox iding a reasonable displacement field vas assumed initially. Although a

complete stress field was available due to three-dimensional characteristics, an iteration

scheme could be a serious inconvenience.

2.4 Finite Element Method

In order to more effectively evaluate the high gradient stress field at the free-edge

of laminated comriposites, the popular finite element method has been applied b\

n umerous linvestigators.

2.4.1 Displacement Method

\Vang and Crossman [13] used a very fine, constant strain triangular element grid

to model The laminate boundary region through a cross-section. The functional

dependence of the assumed displacement field was of the same type as in Pipes and

Pagano's analysis [111. To overcome the difficulty of computational storage and time

limitation, the solution process adopted the so-called "sky-line" matrix storage scheme.

The results indicated that the interlaminar as well as inplane stress singular behavior

was highly localized in angle-ply laminated composite. A simplified method for

calculating interlaminar stress xas proposed [14] wherein the stresses at the desired

layer-interface were evaluated by substructuriny, the laminate with fewer numbei ol

effective layers. This reduced the number of laminar interfaces and facilitated I mlit

element calculation within fewer elements.

A quasi-three-dimensional finite element analysis was carried out by Raju and

Crew [15] using eight-noded isoparametric elements. In order to approximate the stress

singularities, polar mesh was introduced near the intersection of interface and free-edge,

associated with a so-called log-linear procedure to relate the steep gradient stress with

12



the radial distance from the singular point in the logarithmic coordinate. One major

drawback of this scheme is that the power of singularity has to be determined by

solutions calculated from finer polar mesh near the interface of the free-edge.

Whitcomb, Raju and Goree [161 further pointed out that the disagreement for both

magnitude and sign of the interlaminar normal stress distribution among various

numerical methods could be attributed to the unsymmetric stress tensor at the

singularity. In their approach too, the problem was modeled by eight-noded

isoparametric elements. It was concluded that finite element displacement models were

capable of giving accurate stress distributions everywhere except in the region within

two elements of a stress singularity.

In summary, we observe that in the conventional displacement-based finite element

formulation, evaluation of shear as well as normal stresses required expensive mesh

refinement near the boundary region to approximate the singular stress field. Even

then the actual stress distribution along the free-edge was generally not sufficiently

accurate.

2.4.2 Stress Method

Rybicki [17] used a three-dimensional equilibrium finite element analysis procedure,

based upon minimization of complementary energy, to solve the free-edge stress

problem. Due to the fact that the assumed stress state in the analysis did not contain

singular term, a finite rise in interlaminar normal and shear stresses near the interface

corner was observed for angle-ply layup. However, this method involved very large

matrices and was computationally expensive, and even at that did not yield a

continuous stress field.
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2.4.3 Hybrid Assumed Stress Mode]

In Pian's hvbrid model [29], stress equilibrium in the interior of the elements as

well as displacement continuity along interelement boundaries are ensured, but the

interelement stress continuity is satisfied only in a weighted integral sense. Following

Pian's formulation, Spilker 1181 developed a special hybrid element for the edge-stress

problem. In his work, the assumed stress field was made to sati'fv exactly the

conlinull) 0i tr;Mt ion across inlerlalNer hIoundnries as well as traction- frev conomotl '

illon exlerior planes o the laminate. This vas Iound to be effectice for siUtd 1

cross-pl\ laminales ba\i1w a relativelN simple stress field. it is difficult to extend ihii,

procedure tO intie-pv laminates because in these the complete stress field has to ht

considered.

A special formulation of a singular composite-edge element was developec by

Wang and Yuan [19] based on the Boundar': -'er theory [30] and the variational

principle of a modified hybrid funot,'nal. In the analysis, the singular hybrid element

was used in conjunction with displacement-based eight-noded isoparametric elements, and

it was reported to give satisfactory stress distribution near the free-edge. This method

is excellent for determining possible growth of delamination but would be awkward to

use to predict occurrence of delamination in an intact specimen. This is because

sometimes, it is hard to find the nlace in h\vich stress singularity may occur.

2.5 Summary and Research Motivation

The analytical and numerical solutions discussed above for the free-edge stress

problem are summarized in Table (1). Some conclusions can be made at this point.
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GenerallY speaking, an analytical solution Ior the complete stress field ik

extremely difficult. The solution procedure for the case of a multi-layer

system is not currently available.

2. Use of a finite difference technique suffers from geometric limitations.

Calculation of stresses at the interfaces or laminate boundaries needs to apply

additional techniques, such as iteration scheme. Even then the solution

generally lacks credibility.

3. Con\ entional displaceient based I inite element methlods are incapable of

predicting aIccur;ate stress fields particularly along element boundaries. Si ress

equilibrium approach is apparently impractical. Use of hybrid element doe"

improve stress calculation but is applicable only to some special cases.

Application of singular element near the free-edge boundary apparently makes

the analysis too subjective. In order to have reliable predictions of

displacement and stress fields, it is necessary that the free-edge stress model be

able to approximate the real life situation as closely as possible. In other

words, the displacement and stress continuity conditions along with

traction-free boundary condition have to be exactly satisfied. Considering atso

the generality and effectiveness of fhe analysis, the displacement-based finite

element approach with higher order interpolation function could conceivably be

superior to the other approximate theories.
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Table 1: Comparison of Various Methods for ol\ ing the FD Problems

Ref Author method of analysis calculated stresses

2 Puppo & Evensen Elastic approximation Or (uyTXzT .y

3 Pipes & Pagano Approximate elastic solution (t.7 T7N

4 Pagano ],!odified higher order theory, 0r

5 1.pang & Dic.son Extended Galerhin's approach F 7

6 Hsu & Herakovich Perturbation technique ( j T

7 Tang & Levy Boundary Layer theory a 01 0' 7 T\ y 2 V7 W7X

8 Pagano Reissner's variational 9 X Or r 

principle--mixed method

10 Pagano & Soni Global-local model a x (T T

11 Pipes & Pagano Finite difference method xo0r , 7 r T \

13 Tang & Crossman Finite element method: Cr U YZ 7 X7 XN

constant strain triangle

Finite element method:
16 Whitcomb et al. 8-noded isoparametric a ) 2 7 ,7/

element

17 Rybicki Finite element method: r X ar T77 \

equilibrium stress approach

18 Spilker Finite element method: yorz yz
hybrid assumed stress model

19 Vang & Yuan Finite element method: 0' \ aT 7 XT

Singular hybrid element
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SECTION II1

VARIATIONAL FORMULATION AND FINITE

ELEMENT APPROXIMATION IN LINEAR ELASTICITY

3.1 Introduction

In this section, a \ariational I'ormtilation of thire-dimensional elasticitv is described

and its use as the basis of a finite element approximation is discussed. The treatment

essentially follo\\s that in reference [313. Variational formulation has been used as the

basis for direct methods of obtaining approximate solutions to boundary value and

initial boundary value problems. Traditionally, the approximation space is generated by

complete orthonormal sets consisting of eigenfunctions of self-adjoint operators. The

functions which are used to approximate the field variables are required to satisfy

certain continuity requirements over the whole domain. The finite element method,

however, offers an alternative route for generating the sequence of finite dimensional

approximation spaces. The region under consideration is subdi ided into a finite

number of' discrete elements, and the field \ariables are represented by functions ,.hc

follo\\ the same continuity condition only piecewise within each element. Some

significant differences between the finite element method and the traditional direct

methods include [31]

1. The base functions have local support and are nonorthogonal.

2. The sequence of approximation spaces is ordered by refinement

3. The local support functions may have only limited smoothness
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The support of each base function is confined to the neightorhoKd of a n(Ka i

point and extends oxer the elements of the finite element approximation sharing that

point. Across interelement boundaries \xithin the support and at the boundary of the

support, the function may have only limited smoothness. In a sequence of refinements,

additional nodal points, elements and base functions are introduced. The base functions

associated with each nodal point change with refinement, including a monotonic

decrease in support. Additional discontin uities li ihl be introduced at each refinement.

Varialional formulations and solution procedure for direct methods based on the -inite

element approach must allowx for these pec1liarilies of finite element approximati n

spaces.

3.2 Boundary Value Problem

Consider an open connected region R in an euclidean space. OR is the boundary

of R and R its closure. A typical boundary value problem on R is defined by the set

of equations

Au =f on R ()

Cu =g on OR (2)

where A is the field operator and C is the boundary operator such that

A : ) , -), R (3,

C:)R--V r (4)

VR , V are linear vector spaces whose elements are defined on the regions indicated

by the subscripts. DR, DaR are dense subsets in V R , VbR, and denote the domains of A,

C respectively. DR is the extension of' DR i.e. any element uEDR has a unique

extension in Di and every element in DR is the extension of an element (not



necessarily unique) in DR. For given fEVr, gEVaR, the boundary value problem

consists of determining uEDr along with its extension in DaR such that (1) and (2) are

satisfied.

3.3 A Variational Principle

Let the linear operator A be self-adjoint, i.e. there exists a nondegenerate, linear

Gateaux differentiable, bilinear mapping BR:DrXVr-4S, where S is a linear vector space,

such that

BR(,Av)= BR(v,Au)+C r(vu) u,v E) RnVR (5)

Here, CaR(v,u) are quantities associated with the boundary 6R. Magri [321 has shown

that such a bilinear mapping can be constructed for every linear operator A. If the

boundary operator C is consistent [33] with the field operator A, i.e, there exists a
nondegenerate, linear Gateaux differentiable, bilinear mapping B :DaXV -S, such that

C8R(v,u) = B8 R(vCu) - B6(u,Cv) (6)

then, the linear Gateaux differential of

fl(u) = BR(u,Au-2f) + B (u,Cu-2g) (7)

vanishes if and only if (1), (2) are satisfied. Sandhu and Salaam [33] further pointed

out that even if the boundary condition is homogeneous, i.e. g = 0, the quantity

BaR(u,Cu) in (7) must be included if the variational principle is to hold for the path

of Gateaux differentiation not satisfying homogeneous boundary conditions. This is

important for approximation in finite element spaces where the variation is introduced

as change in the nodal point value of the field variable and, consequently, the path of

variation may not satisfy the boundary condition or internal smoothness.
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3.4 Variational Principle for Finite Element Approximation

In the finite element method, the region R is apprioximated by a set of elements

Re; e 1,2 ....... m) such that

RflRf =0 if e;6f (8)

m

lira U (9)

The field \aria hlcs are h\-r in;tcd by n ti', \\hich na \' not be sufficient I

smooth. o lO\ er, o\er e,, h elene.t adci clo snmloti ness is assured. If , represcnis

the interinor of the e-th element and R, ts hwo undar. \e ha\e [34]

I1B (uAx) = BR.(\,Au) + (',(V,u) I 10)

and

C 8Re(vu) BaR,(v,Cu) - Bd (uCv) (I1)

Further define

I11

Di (u) = z [BR (u,Au-2f) + B0 u,Cu-2g)] + B (u,(Cu)') (12)
e=n

where 0R, represents interior boundaries of elements and a prime denotes a jump. The

Gateau~x differential

II,

A, () (u) = 2 E[11, (v,A u-) + ,, (vu- + 2 11 (v,(Cu)') (13)
e=l C

vanishes if and only if (1), (2) are satisfied over each element and (Cu)' vanishes, i.e.

Cu is continuous across interelement boundaries. If there are actual discontinuities in

the interior of R, let

(Cu)' = g' over OR' (14)
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where g' is specified over 6W.  Then, if the union of intersection of element

boundaries covers R', the functional in (12) may be redefined as

m

a(u) = [Ba(UAu-2f) + B o(U,Cu-2g)] + B i(u,(Cu)'-2g') (15)
e=1 e

3.5 Linear Operator with Adjoint Splitting

Many physical problems can be written in the form of

Au = Vu +TTu f on R (16)

where

F: WR- V (17)

T:W R--+XR (18)

E:XR-4YR (19)

T:Y R-#VR (20)

T* is the adjoint of T, i.e. BR, IRR such that

BR(u,Tv) = 19lR(v,Tu) + CoR(v,u) (21)

Here BR:WRXXR-S and r:WRXVR-S. S is a linear vector space and BR, BR are

continuous non-degenerate bilinear mappings. E, F are symmetric, i.e.

BR(u,[v)=BR(v,l'u) (22)

B R(uFv) = B R(vFu) (23)

Introducing e, or through the equations

Tu - e = 0 on R (24)

Ee - o = 0 on R (25)

(16) can be written as
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Fu + T a = f on R (26)

Combining (24) through (26), these constitute the coupled system

F 0 T .u f

0E - =0 on R (27)

T-1 0 a 0

If the inverse of E exists, let G=E'. Then, combining (24), (25)

'u - Go =() on R (28)

(26) and (28) arc the LOupled system

T -(; = on 1 (29)

(29) is referred to as the complementary form.

For an operator with adjoint splitting, let the boundary conditions on u, o" be

Cu =g 1  on S, aR (30)

C2c° =g 2  on S2  OR (31)

The discontinuity conditions are

(Clu)'= g'I on S', (32)

(C 20r)' = '2 on S2  (33)

where S11 and S, are interior surfaces imbedded in the intersection of finite element

boundaries. C, C2 consistent with T, T* implies the existence of bilinear mapping

Bs1, Bs9 such that

BR (u,Tv) Re(v,T'u) + Bs2(v,C2u) - BS!(u,Clv) (34)

where S;, S; are complementary subsets of boundary ORe of element e.
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The function governing variational formulation of (27) for finite element

approximation is

F(u,E,o) = [B,(u,Fu+To--2f) + B Re(,EE--o) + B Re(c-.Tu-g) + B Re n (crC u-2g)]
e= 1

+[BOR s(u,C 2o--2g2 )] + B1 (cr,(C u)'-2g'.) + B2(u,(C 2 r)'-2g'2 ) (35)

It is important to note that even if there are no interior discontinuities in the

physical problem or the specified boundary conditions are homogeneous, the boundary

and the discontinuity terms must be included to accommodate the nature of the finite

element approximation space [32].

3.6 Principle of Minimum Potential Energy

The field equations for isothermal quasi-static deformation of anisotropic, linear

elastic solids, assuming no initial stresses and strains. are:

a) Equilibrium of stresses

oT. +f.=O on R (36)

b) Kinematics

For small deformation, the strain-displacement relationship is

u(,.) = E, on R (37)

c) Constitutive relations

oai = E~) 6 k) (38)

on an open bounded connected set R contained in the three-dimensional Euclidean space

E. Here ui, fj E. ,crj, Ejk1 are, respectively, the components of the displacement vector,

the body force vector, the infinitesimal strain tensor, the symmetric Cauchy stress

tensor and the isothermal elasticity tensor. The range of indices is 1, 2, 3 and
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summation on repeated indices is implied. A subscript following a comma denotes

partial differentiation with respect to the coordinate, in the reference frame, defined by

the subscript. Parantheses around subscripts denote the symmetric part of the quantity.

Let the functions u,, Eij, o, satisfy the continuity and differentiability properties

required in the equations of elasticity over every subregion R,. Then, admitting

(u ,'Ei,,tr) as the 15-tuple of dependent variables, components of vectors and tensors

being regarded as ordered subsets in an n-tuple, (36)-(38) can be written as [331

0 0 .11(s &.+8
2 k aJ jk i u f-k

0 -1 E = on R (39)

0.. 0-(8..--+8 .-0--) -1 0 ij
2 ki0 1  "Ok

Consistent boundary conditions for the problem are

-n.u. -n 1a; on S, (40)

,.n. t. on S2  (41)

where the n, are components of a unit normal to the boundary S, and the jump

conditions are

(0- niY g'2  on S' (42)

= -glj, on S'1  (43)

Setting up the problem in inner product space, i.e. B(uv)=f uvdR, and defining

M

BR(uv) = EBR(u,V)R°  (44)
e=1

The basic functional corresponding to (35), allowing for relaxed continuity, is [331

I ,(ui9Ekl'cr) f R (E. E .kEk-u '.-2e.cr..- 2 uf +u Ocr.)dR
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+ f S2u f O1 ,n,-2t i)dS - f S1 rinj(u 1 20)dS+ f Su J(u,,n1 )'-2g '2 ,)dS

-f 0 oj(n uY-2g' 1 j1)dS (45)

In using (45) as the basis for finite element approximations, it is not necessary for the

interpolants to satisfy any boundary conditions or interelement continuity. For no

jump discontinuities, g',,, and g',, vanish. However, it is important to retain the terms

containing (uT~ni)', (n~u,Y' in the formulation.

Using symmetry property of the operator matrix, i.e.

fRo-,J~d f a= u idR + f uin Ju d+ ( n u Yd S

+ f iuj(oijn,)dS (46)

to eliminate the term containing o-,,, from (45), the functional can be written as

Q 2 W~ite g j) fR j.E jklk IdR + 2 fRo(U-.)dR -2fRu ,f dR

-2f sultdS - 2 fu Oinju1 -f)dS - 2f I ui(nju )'dS (47)

f12 is the modified variational principle with three independent fields proposed by

Prager [35]. If u3, F_,J are restricted to satisfy the last of (39), the strain-displacement

relations, Prager's modified principle of total energy theory is obtained

03 = fR 6J ijke kidR -2f Ru~f~dR - 2futdS -2frI Jn.u-i,)dS

-2 f crIo-j(n Ju YdS (48)
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(48) was also proposed by Pian and Tong [29] and is the basis of their hybrid method

with assumed displacement field. If the displacement field, u,, is further restricted to

satisfy the displacement boundary condition (40) on S1, Q!3 reduces to

flIt=fREjk kIdR-2f ulfidR -2f u,t dS-2 f  " cj(nju)'dS (49)
$2Ri~~ -J -2 J

If the finite element interpolations are chosen to identically satisfy displacement

continuity across Si, the last term in fl, vanished and (49) becomes

SS =f R lk]EIdR-2fu,f,dR -2f utfdS (50)

The vanishing of the variation of 0, with respect to the displacement components u

implies the satisfaction of equilibrium equations (36). This functional corresponds to

the classical principle of minimum potential energy which is customarily used as the

basis of the finite element displacement formulation of the elastostatics problems.

3.7 Assumed Displacement Finite Element Formulation

For the boundary value problem stated in (1) and (2), the solutions u to the

forcing functions f in general belong to L2, the space of square integrable function. L,

is a separable Hilbert space. However, u may be contained in a subset D of L2 such

that A, the linear operator, is defined on D. We assume that D is dense in L, . If

the set of functions {k, k=1,2 ....... oo} is a basis in D, then any function uEL2 can be

expressed as an infinite sum:

u = ,akbk (51)
k=1

26



A scheme to generate approximate solutions is to use a finite set of terms in the

infinite sum above. Thus, as an approximation

I1

u ak k (52)
k=1

The approximation process consists of an appropriate choice of n, 0, and the coefficient

a.. Several alternative procedures are available. The finite element method is a

special process of selection of finite subset of the basis {k}. The coefficients ak are

generally evaluated by requiring the approximate solution to satisfy a variational

principle.

The finite element idealization essentially partitions the spatial region R into a

finite number of nontrival discrete elements or subregions. The geometry of the

elements is defined by a set of points in space called the nodal points of the system.

Over an element m, let an approximation to u be u ' such that

um  amko (53)
k=1

or in matrix form, dropping the subscript n,

u m 
= {,m}T{am} (54)

where {fin}T is a row vector consisting of 0" as its elements and {am} is a column

vector of coefficients a'. Evaluating the function, and its derivatives up to a certain

order at nodal points, yields

{um } = [0,fi]T {am} (55)

where {u') is the vector of nodal point values of the function and its derivatives up

to the order selected, and [Wnr is the matrix of base functions evaluated at each niodal

27



point. The rows and columns of [01' r are linearly independent. If square, the matrix

is invertible. Hence, we can write

{am} = [='{ [A]' {u '} (56)

where A=[07YT

Substituting (56) into (54)

u= [i [A]-' {u,}i = [0r.. {urnl (57)

where [0] can now be regarded as a set of interpolation functions relating nodal point

values of a function and its derivatives up to a preselected order, to the value at an

arbitrary point within the element m [361.

In applying the potential energy functional shown in (50), ej is assumed to satisfy

the strain-displacement relationship, and the displacement field should satisfy the

prescribed displacement boundary condition on S, Vanishing of the variation would

imply satisfaction of the equilibrium equations. As stated previously, in the finite

element method, the displacement u is approximated by interpolation functions and

generalized displacements at a finite number of nodal points of each element. The

interpolation function must be chosen in such a way that when the nodal point

displacements for two adjacent elements are compatible, the displacements along the

common boundary are compatible. Meanwhile, the interpolation function must also

satisfy the requirement that the first derivatives of the displacement field exist.

Based on (57), the assumed displacement over an element can be rewritten in

matrix form as

Am) =[q Ir m (58)
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where qm is the column matrix of generalized displacements at boundary nodes of

element m which determines the inter-element continuity, and rm is the column matrix

of generalized displacements at nodal points either at the boundary or at the interior

of element m but which do not affect the interelement continuity requirements. The

corresponding strain distribution is

rm
rn1} i 1 0m]T q (59)eq 'c er Itin I

where on, and 0' are obtained by differentiating 0' and 0' with respect to the

spatial coordinates. Substituting (59) into (50) and expressing in the finite elenent

discretized form, we have [37]

f r [E dRr -2 0m] fOIf} dRm

-2f m 10mI] [Omfjt} dR~ (60)fs2n&str]  qr M

where

[Em}= matrix of elastic constants for element m

[,'n]= matrix of interpolation functions for the

body forces in element m

[4nI= matrix of interpolation functions for the

prescribed tractions on the surface Sm of element m

The summation sign in (60) implies the direct stiffness assembly procedure, and the

vector jqJ is the vector of global displacements. fl, can also be written as

M
n,= ,(q T [Kq]{qm} + 2 {m}T [K']{q} + {r }T [K'J{r')

M1

2{Fm}T{qm } -2{Fn T rml) (61)

29



where

[I [E n]I[,n dR,(2
Kqq fR eq e[ (62)

Kq= fR [m][EmI [0r'ndR (63)

m
K R [Teq] [ 6m ] dR +, 

(64)

F f [O"Ht"fTf"}dR, + [O1"nT 'tm'dS.(5

R s2 s, ,,

[0 .. fTf. ft-i...
F, = RM. f R n, +  lf > ]Lnsm ]t dS (66)

The displacements {r'} in element m are independent of displacements, {r'}, for i;m.

The stationarity condition with respect to their variations yields

[Kr ]{q m} + [K]{rmr } {F} =O (67)

Solving (67) for {r'} yields

{rm} - [KY 1 (F} mr- [Kt ] {qm ) (68)

Substituting (68) into (61) yields

M
Q = E({qm}T[Km] {qm} - {Fm}T{qm} + Cm) (69)

m=1

where [Km] and {Fm} are, respectively, the element stiffness matrix and the equivalent

nodal forces defined by

[K__]=[Kmn][KmI][KrJ i[Km (70)

qq rq rq

(Fm} = {Fm)} - [Km I]TK,'I{Fr} (71)

Cm = r {F r [Krn]-{Fml = constant (72)
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fis in (69) is given in terms of the generalized displacements {q} which are not

independent for different elements. Using global coordinates, (69) can be written as

fis = {q}T[K] {q} - 2 {qI T{F) + C'. (73)

Taking the variation of this discretized form of the functional yields the system of

algebraic equations

[K] {q} = {F} (74)

which can be solved for the unknown nodal displacement {q}. The matrix [K] is

positive definite, symmetric and banded. The process of eliminating the generalized

coordinates, {r}, from each element is called the static-condensation process [38]. The

introduction of these terms, which do not interfere with interelement compatibility,

results in an improvement in the satisfaction of the equilibrium equations within each

element. However, the satisfaction of the equilibrium equations along the interelement

boundary is still governed by the degrees of compatibility supplied by the interpolation

functions for the generalized displacements, {q}. The solution obtained represents an

underestimate of the true solution in the sense of energy [391.
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SECTION IV

CONTINUOUS STRAIN FINITE ELEMENT

INTERPOLATION

4.1 Introduction

In the fi nite element met hod, the d kplacement field is approximaled h\

interpolation functions and generalized displacements at a finte number of nodal loints

which also define the geometry of the elements. To ensure continuous strain across

interelement boundaries, it is sufficient that the interpolation functions be such that

the displacement components as well as their first derivatives along the common

boundary are continuous.

Tocher and Hartz [40] pointed out that for plate bending analysis, continuity of

slopes of the plate displacement surface is necessary. The compatible cubic interpolation

functions developed by Tocher [401 and by Clough and Felippa [41], among others,

satisfy this requirement. For plate bending, the generalized displacements used were w,

the transverse displacement of the plate and its derivatives w , w , IHere, the

subscripts x or y denote partial differentiation with respect to the independent

variables x, y. Applying the same displacement interpolation scheme to the plane

elasticity problems [40], the corresponding generalized displacements were

u, u, UP v, v, vy, the in-plane displacements and their first derivatives at each node.

Thus, continuity of strain between adjacent elements was ensured.
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Instead 01 using a local Cartesian coordinalc system in the derivation of the cubit

polynomial w\ith nine coelicients for each displacement component in T(ocher and

Ilartz's work, triangular coordinates were used in the present fully compatible

quadrilateral element, following Felippa's [42] work on plate bending analysis. This

simplified the generation of various matrix relationships for the constituent triangular

elements. Tocher's [401 element used incomplete cubic polynomials. Felippa's elements

\\ere based on complete cubic polnomnials ind \\ei therefore selected for application lk

tle free-ede problems. Thesc -leinent, i11ludU l ocher's Formulation as specialization.

Cubic expan sion of tle t) d(,ree -ol frcedoml conL0ming, triang_,ular element (LCCI -9) f'or

I)oth in plane displacement components as used bY locher [40] \as extended to

quadrilateral element designated Q-15. Quadrilateral elements, Q-19 and Q-23,

assembled from LCCT-11 and LCCT-12 triangular elements introduced by Felippa [423,

were also redeveloped for the plane elasticity problems. The continuous strain elements

were used to analyze a pseudo two-dimensional free-edge stress problem similar to that

of Pipes and Pagano [11] for composite laminate coupons under uniform extension.

4.2 Interpolation Functions of Continuous Strain Elements

In the following. Ielippa's [41.42] approach for deriving the plate bendine

interplxlation functions is sumnmari/ed. We use the same clement name as Felippa's and

start with u instead of %\ for the plane elasticity problems. Similar derivations

applied to the displacement component v.
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4.2.1 LCCT-12 Element

A complete cubic polynomial in 1\o \ariables is defined by ten independent

coefficients. The values of u, tile x-direction displacement of the plane stress body and

its derivatives u , u. at the three vertices of a triangle yields nine independent

quantities. To ensure continuity of derivative u. across element boundaries, it is

necessary that u be known at some points other than the vertices along each of the

lhree edues. It is kwrn\en ient to introduce mid side nodes on each oft lhe three ed,,cs.

Ihis e!enent then has twe Ie independeni qua ntinies aiainst the min inim u(,I ten

needed to completely\ define a iiubic polynomial.

In order to use a cubic polV nomial \\ith continuous first derivatives in the interior

as well as on the element boundaries. Felippa proposed that the element be made up of

three subtriangles as illustrated in Figure (2). liach subtriangle has three vertices and

one mid-side node to supply the ten independent quantities for defining the cubic

polynomial interpolation in its interior. The point 0 could be any interior point.

However, for simplicity of formulation, the centroid is generally used [41].

The nodal displacement degrees of f:eedom to be considered in the stiffness matrix

of tile complete element (Figure 2) include the values of the in-plane displacement

components, u, v, along with their first derivatives u,, u:. \,, i=12,3) about the

x and y axes at each corner as well as the normal slopes at the three mid-side nodes

about axes perpendicular to these sides respectively, viz. un 4, u u ,n6, and \'n4' VSI v .

After forming the expression of the cubic displacement patterns in the three

subelements, because of the common displacements imposed at the nodes, the in-plane

displacements of two adjacent subelements are identical along their juncture line. To

establish continuitV of u, along the edges of the subelements, it is sufficient that u,,

3,1



U3'U 3 UY3

v3v 13 7 3

(xS#y$)

3

U11

46  V

(x1, 1) 42 (Xry,)

U

* U UY Iv 
2U x2 luY 2

Figre2: Assembly of' the lC( 1-12 Pla1ne Eilasticity Element

3 5



evaluated at points 7, 8, 9. mid-points ol These edges, !iom adjacent subtriangles be the

same. These three conditions vere used to evaluate the in-plane displacement u, and

its deriatives u\, u, at the interior point (). With the interior point thus condensed

out, Felippa [411 obtained a set of interpolation functions for the LCCT-12 element.

These define a piecewise cubic polynomial interpolation such that the in-plane

displacements and their first derivatives are continuous both in the interior of the

e lentent and ;ilL 1t' he entire hOUndarnr of lhe complete trianp ular element. A mre

detailed deri\ alon procedure iand the complcte listine OF the cubic interpilation

functions are yken in AppendiN.

4.2.2 LCCT-11 and LCCT-9 Elements

Assembly of three subtriangles results in the I.CCT-12 element (ligure 3a).

However, the mid-side nodal points in this element are not desirable for programming.

They complicate the mesh generation procedure, increase the band-width of the

assembled equation systems, and require special identification in calculation of the

stiffness matrix. To overcome these difficulties, it may be desirable to develop a

special element without external midpoints. This can be accomplished by assuming the

normal slope to vary linearly along one or more sides [42].

With the elimination of one mid-side node, the five-node element is designated as

J.('T-11 (Figure 3b). Further imposing linear slope sariation constraints on three sides

gives a triangle with three nodal points and results in LCCT-9 element as illustrated

in Figure 3(c). The LCC-T-9 element is identical to the Tocher and Hartz [40] element.
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(a) LCC-12 (b) 1X 'I I (C) LCCI'-9

Figure 3: Compatible ITiangular Elements
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4.2.3 Quadrilateral Elements

Elements of quadrilateral shape can be set Lip as assemblages of triangular

elements. Figure (4) shows quadrilateral elements built up from four I1('-112.

LCCT"-1I and LCCT-9 elements. The quadrilateral element in Figure 4(a) has a total

of 23 degrees of freedom for each variable and was designated by Felippa as Q-23.

Using f'our LUC'I'-11 or LCCT-9 triangles, the Q-19 and Q-15 elements as shown in

Viur S 4(h). 4(c) rcspetiel\h are reali/ed.

Tli quadrilateralI element has interior nodal points not connected to the ticr

quadrilateral element in a finite element mesh. These points can be eliminaied hlrou ,,h

a local condensation process. 'hus. the final quadrilateral clment h,,s 24 degrees ol

freedom, corresponding to the t\o in-plane displacement components and their first

derivatives with respect to spatial coordinates x and y at the four corners of the

elements and an ,dditional eight degrees of freedom corresponding to the normal

derivatives of each of the displacement components at the mid-side nodes. Assuming

that the normal derivatives vary linearly along the edges of the quadrilateral, the

mid-side nodes can be dropped. This reduces the Q-23 to Felippa's Q-19 element with

12 degrees of freedom for each of the displacement components. It is a fully

compatible quadrilateral element, having a continuous cubic variation of displacement

and quadratic variation of strain both in the interior of the element and along the

entire boundary of the element, as well as a linear variation of normal slope along all

external edges. We note however that LCCT-9 and LCCT-11 do not use a complete

cubic polynomial. For this reason, Felippa's LCC -12 element based on complete cubic

interpolation was considered an improvement upon Tocher's [40] LCCT-9.
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(a) Q-23 (b) Q-19 (c) Q- 15

Figure 4: Quadrilateral E.lements formed from (a) l.CCT-12 (b) L.CI-I I (
I XCT-9
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4.3 Application to thle Free-Edge Stress Problem

I gu re (5) shiows a sym-nimetric lam11iated COmplo)(si te coupon under astate of

uniform axial strain. In this case, awvaY from the ends, the transverse N~constant

plane displacement fields can be assumed to be independent of x. These assumptions

imply the following form for the three components of displacement [11].

u(x.v,z) =e,,x + li(Y,z)

X CVV.z) (75)

\\(~, - Vy.z)

\\ ere t:, I; thle un jf rn ini p)lne s t ran InI the \-direction and U, V, are '0mponlelnt"

of displaiCementL a1lng X. IN and / axes respectiveiv.
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4.3.1 Finite Element 1 'ornulation

l'he constItuti\e relationship for linear elastic anisotropic material obeys the

generalized It(loke's law

o =Ci. i,j=1,2,....6 (76)

where E, is namely the uniform extensional strain e.. Based upon the minimum

potential energv principle (50) and substitutin various interpolation functions for

displ.ierment. hodY I rcc and Irlclhon litld t: ppkk rino in the governing functional (6)).

a nod;l lirce-di placvment relation .\itlin c;,ch clement is expressed as

I u = R (77)

\where R represents the resuliant external no0dal force, K,, is the element stiffness

matrix which can be written as

K= fvBIC,, I)B dV m,n=1,2 ... 6 (78)

The range of i, j depends upon the 'degree of freedom' of the element, B is the

displacement transformation matrix and V is the domain of the element.

Because of the longitudinal extensional strain is specified as constant, the

corresponding term in the stiffness matrix can be separated from the rest and (78)

rewritten as

1K u = R -R" (79)

where the range of summation on m, n is now 2, 3 ....... 6 and R, is the element

residual force due to uniform in-plane strain e., i.e.

RO B, ,C,,, eodV (80)
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After forming the system stiffness matrix and nodal force vectors, the displacement

components can be obtained by solving tile resulting set of linear equations in the

standard manner.

4.3.2 Higher Order Elements

For the free-edge stress problem, due to the fact that dependence of the

longitudinal displacement on the longitudinal coordinate x is made explicit, the three

displacement components aire corn pletelY delined 1)Y three Ia nctiOns of twVO independent

tral ns\crsc col dlllates V a ld z as sluo\\ n in ( 75). T! ILIS. the coMptc ukL

inlterpoIatIon u I'nct ions used for plane elasticit' problems can be extended to the pscud,

two-dimensional model of a laminate coupon. and a continuous strain field along both

in-plane and transverse directions ensured.

Figure (6) shows the nodal displacement degrees of freedom considered in the

stiffness matrix for the complete triangular element. These included the values of the

in-plane displacement components u, v, the transverse displacement w, along with the

first deriviatives u., u, v, v2, w,., w, about the y and z axes at each corntrs i=1,2,3

as well as the normal slopes at the three mid-side nodes, viz.

u u,, u . , Vs, \' w ,, w s, ,. This is the LCCT-12 element but with total

of 36 degrees of freedom. Further assuming the normal slope to var" linearly alown

one or all three sides, the L.(T(- 11 and L('CT-9 elements, with total of 33 and 27

degrees of freedom respectively, are obtained as specializations.

As described for plane elasticity, quadrilateral elements, designated as Q-23, 0-1 9

and Q-15, were set up as assemblage of four L.CCT-12, LCCT-11 and I.C(7"-9

respectively. After eliminating the interior nodal points through a local condensation

process, the final quadrilateral element, Q 23, had 36 degrees of freedom, corresponding

,13
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Filgure 6: Free-Edge Stress LCi-2Element
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to the three displacement components and their lirst derivatives with respect to the

spatial coordinates y and z at the four corners of the element and an additional 12

degrees of freedom corresponding to the normal derivative of each of the displacement

components at the mid-side nodes. It is a fully compatible quadrilateral element,

having a continuous cubic variation of displacement and quadratic variation of strain

not only within the elements as well as along element boundaries, but also across

lamninate interlaces.
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SECTION V

CONTINUOUS TRACTION FINITE ELEMENT

PROCEDURE FOR COMPOSITE LAMINATES

5.1 Introduction

In the continuous strain Q-23 element de\eloped for the free-edge stress prublkm.

both displacement and strain are continuou along interelement as well as interlaminar

boundaries. Ilowvever, the tractions calculated across, the interfaces between differently

oriented layers are discontinuous due to different orientation of adjacent plies. Also,

traction-free boundary conditions associated with the finite-width laminate coupon

cannot be satisfied. In order to remedy these two defects and make the numerical

model more representative of the real situation, it was necessary to ensure interelement

as well as interlaminar continuities of tractions and the traction-free boundary

condition along the free-edge. To accomplish this, nodal point degrees of freedom must

include some components of stress and exclude normal gradients of displacement which

will be different across interelement bou ndaries. This was implemented by

transforming the displacements and their normal gradients at each of the nodal points

of the Q-23 element to a mixed set of degrees of freedom which would be continuous

across interelement boundaries. These included both displacement and interlaminar

traction components. Appropriate displacement-stress relationships derived from the

constitutive laws were used. For this element, traction-free boundary condition could

be satisfied in a point-wise sense.

46



The continuous traction Q-23 element still has LUI)IC variation of displacement over

the element and retains continuity of displacements across interelement as well as

interlaminar boundaries. The strains as well as stresses vary quadratically within each

subtriangle of the constituent LCCT-12 elements of the quadrilateral. However, certain

components of strain are not continuous across interelement boundaries but interelement

tractions are. ]'his correctly allows for possible differences in orientation of ad.jaceni

laminae. 11 adjacent layers have the same stress strain relationships due to identical

orientation, stress continuity will imply strain continuity' as \ell.

5.2 Derivation of Displacement-Stress Transformation

In the Q-23 element analysis, the number of nodal degrees of freedom is different

for the corner nodal points and the midside nodes. For this reason, derivation of

transformation matrices for displacements and their gradients at the corners of the

LCCT-12 element, and for normal ;radients of displacement at the midside nodes on the

element boundaries, is discussed separately in the following sections.

5.2.1 Corner Nodes

The strain-stress relationshir for an orthotropic material eNpressed in the x-y

coordinate system is

E= S o- i.j=1,2,.6 (81)U Ij

or in matrix form
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E 's 's s; ()
1 1 12 1 1t

E S1 S1 S1 () ) 6 0

cz _ 13 2,3 S33 o At(, O

(82)
yz s44 S45 yz

0 0 0 5 r()TX
/y 16 2,6 2,6 0 0s66 TX'

where S,, are componments of the compliance matrix for flofl(lcliic materials which

have %vimeti-\ V,11 Ii e',pe~l TO' X-\ plane (Figure 2) and are def'ined a'; [4.3]

s ni 4n +( 2S +5 ")m l' 2+<n14

2 i 11 12

13= S111 2 +S -,3 n1

S 16=[2S) IM2 -2S 2 2 n +(2S 12 + S,,X n2 m Am n

S S n 4 +(2S +S )M 2n 2+S m4
S22= 1i 12 66, 2

S23=13 n +23 2

S2 6 =2S I n 2 _2S2 m 2 +(2S 1 +S 06XM 2 -n 2)]m (83)

S33= 33

s36= =2(813 -S ,3 )mn

S44=S 44 M
2 +S S. n 2

545 =-s 4 4 mn+S,-,,mn

11,4( l+S,-2S 2-S )m 2n +S 6

where mncosO', nsinO', and
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- 1 2- 1I I , '
_1 1' 12 r 1 '3 2

- , S,,= , S3=- 32

Ell - E22 33 (84)

S 31=- V1--3 S 3=_V23 ,S33=- :1
El 2 E22  33

S 4 4 =G ' S 5 =- G  S $ 6 6 =G

23 13 12

0' is angle of ply from global axis x to material axis 1, and 1,,. i,, V,, (ik .2.3)

are moduli of elasticity, shear moduli, Poisson's ratios, respectivelv, in materii I

coord i nates.

Replacing the strain components by their corresponding displacement gradients. for

small strain theory, and rearranging the constitutive relation, (82) becomes

ux  Ss S2 S, Ss 0 0 cr x
UX 11 S12 S16 S13 0 ,X

V -S S - 0 0cr
y 12 22 26 23 y

Uy 16 26 66 36 0 0 rxy (85)

Wz S13 S23 S36 S 33 0 0 (z

w +V 0 0 0 0 5 4 45 Ty

u 0 0 0 0 5 S 5 T rz

or symbolically

fE D,) I D,,cr,
2  '1 1021 "2

where

U W

4E =Vy i, { 2}w Yv

U U
y z (87)

(T,1 2, J% = T V

.19



and

S]= S,2 ICS1
[I 12 " "' [ 12 S,0(

S16 S' 6 6 3 (88)

[13 S23 S36, 33 0 08

[D,1 3= o ' (, , [D2= 0 S44 S41

0 () ) I o o S 4 i

To relate the in erl.jni nar sirain components {EJ to their corresponding interlaminar

rest I cSS 1 ,nOl cnts I(r,}, {o-,} \ tas clim -,n.ted through a static condensation process. This

vield's

JE =[S ]ICTJ} (89)

where

[s]}= [DE 2HD 2 E ,1  1  (c0)

[S HD22]-1321 [1) 1 D12] (91)

The inverse of [D1 ], namely, the compliance matrix in plane stress case, can be written

explicitly as

[D K] (92)

where
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Q1 1=Q1 m 4 +2(Q 12
+ 2Q,)ni2n2+Q22n

4

I 2=(Q l+Q.,-4Q,)m2n2 +Q (rn 4 +n 4 )

Q,(,=-mn 3 Q2 +m 3nQ, -mn(m 2_n2 XQ 2 +2Q 6 (,)Q -m 222 1 2n2 4 1 (93)

Q2 2=Q n4 +2(Q, 9 +2Q 66 )m2 n2 +Q 22 m

026=-m
3 nQ2 2 +mn 3Q1 l+mn(m2-n 2XQ 12 +2Q 66 )

066=(QII+Q,-2Q1 2)m 2 n 2 +Q66 (m 2 -n 2 )2

with

22

Ql,= ~ I- ,v -12 - 1 2 1), 12

12 21

Substituting (92) into (91) and (90), (89) could be expressed as

WzBuB yBu) 0 o

z 5 55 Lz4yz()

where

B1 = S13 Q11 +S23 Q12 +S3 6Q 16  (96)

2~S 13Q12+S23Q)22+ S3 Q, (7

B 3=s, 3Q6(+Sl 3Q,2 +SI,Q, (8

and

X=B S 13BS, ,+1 3 S (99)

The gradients of displacement appearing in the expression for interlaminar Strains were

then written in terms of interlaminar stresses using (95), i.e.

uz =S45 -TY7 +S55x (100

v = (w +v )-%kw ,S7- (101)51 N 
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w\ =, -U,.-2v V- B. I U )+11 U +1.,\ +11 u

3u +B 2v+1 3 u (102)

Combining (100)-(102) with the rest of the displacement nodal degrees of freedom, u,

v, w, uY, vs, wy, and noting that u,=eo, the applied strain loading, the generalized

displacement components at the corner nodes of the 1.CC1T-12 element were related to a

mixed set of deg'rees of freedom as follow\s:

XV

LI U

" 0 () 0 0 0 () () () 0

y yZ

0 0 00 0 1 4 5 44 0 , 0
z xz

9 0 0 B 3 B 2 0 0 0 $33-x o e.

or symbolically

{r}=[G]{r'}+{R} (104)

Bl, B2, B3, and X occurring in (103) have been defined by (96) through (99). Thus, at

each of the three corners in the I.(T(1 12 element, we have three displacement

components u, v, w along \with three inplane strain components, u., v.., wY, and three

interlaminar stress components r.. T,,, or
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5.2.2 Mid-side Nodes

In order to have traction continuity across interelement as well a. interlaminar

boundaries, it is necessary that the three traction components calculated at the mid-side

nodes on the common boundary from two adjacent elements be the same. This was

accomplished by transforming the displacement normal gradients associated with each of

the mid-side nodes in the LCCT-12 element to three boundary traction components

through the folloxwin , relationships.

Let x, and x', be tv\o right handed ( a rlesi cordinate systems having the samne

origin. Then the traction \eclor T. on the plane with normal direction N, has

components t, and t' in the txo systems. Th tw\o components are related through the

following transformation [441

t' =1.t' (105)
i U J

with

l..=e'.'e. (106)

where e',, e, are unit vectors in the two coordinate systems. The traction vector can

also be expressed in terms of stress components, that is

t,=o, n (107)

with

n ,=cos(e,N) (1(08)

Substituting (107) into (105)

t'"=lij t=l r k nk (109)

For the free-edge stress problem defined in a pseduo two-dimensional space [11],

the traction vector T at any point on the element surface can be decomposed into

three components, t,, i=1.2,3, in the x', coordinate system. FIigure (7) shows these
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three traction components which indeed can be regarded astie it OUt-o0-plane shearing

stress a,,,, the normal stress u ,,,, and the in-plane shearing stress (7-, The relation

between x, and x', coordinates as shown in Figure (7) yields

1l=1, 12=1 1 13=0
121=0, 12 2=m, 123= n (110)

.1 =0, 132=-n, 133=m

and

\\here m=tosO, n-=sinO and 0 is the a!ngle bet\\een lhesc I\A0 11coord i l I I i d a 1' ,

the above quantities into (109), \ve have

t =mr +n (112)i 1 A \-Vjx x \Z

t' 2=oc,,=m aoY +2mnryz+n_--z (113)

t 3=_W =(m 2-n 2 )r +mn(o,-o- ) (114)

Here, for interlaminar stresses acting on the element boundary are nothing but the

traction field, o", uo-., on,, expressed in (112)-(114) indeed represent the three traction

components as illustrated in Figure (7).

The stress-strain relationship for the orthotropic lamina expressed in the x-y-i

laminate coordinate system is

0* 1 C1 C1 o C I ,E
I C 1C2 C,23 0 I6l

a- C C 0 0 C 6
('z C13 '23 '33 36 z

Iyz '0 0 C44 45 0 )yz(

r (z 0 o 0 C45 C55 0 XZ

Txy '16 C26 '3, 660 C, \Yy
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\\ here C is the sit iiness mi tri Lr ifliofl\ 1 1C111nL s\'m nletry With respeit to %-Y plane

and is defined as 143]

C1 , (m, r 4 +2((. 1 2+2(',, )nn 2 +C,n 4

c12 (C II+C 22-4C6)m 2 n + 2(m4 +n 4 )

c 13:C 13m+C,3
n 2

, nC 1 1 +2(C +2( )m-n-+C'nm

C (

H" (ln( n - +2 iif -

(' =-(,,r'n+( inn +'4- +2N , )mqm-n

c(+U= " .+( 2n

2C _sC m-+C__n
44

C66= (C1, +C 2 (-2 2)mn2 +C66(m2-n) 2

where, with m=cosO', n=sinO', again 0' is angle between the global axis x to material

axis 1, and

(1 -v v+ (v+ - v-"
121  1 c 31 _3 'I]

(1-. v1  )l, ( - v l ,v )vL1('2= C I7A jA A (117)

(7H A ' '.-

C 44= 23' C5N=63i C, 
66= 12

with

A=l-v2 2-v ,' -v i " -2vv 32V13 (118)

(112)-(114) along with (115), gives
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m7 mC-  n(. n. n(-

fi lll3 _ 32, +n2C n2J2-+n2 2mn2n 2nn(*4

O'n)S (C 3 6 -C 26)mn (C3--C 22)mn (m 2 -n 2 )C4 (m 2 -n 2 -4 (m-nC44

U
Y

v

m 2
3 +n (3 + (mC U,+n 2 C )e,(19

W 3 -Cdinn W' I )m ne,

\V

(119) is the general relationship bet\vcen traction components at the clcment mid sidde

nodes and the corresponding displacement gradients. It is different foi" each element

midside node.

In order to relate the displacement gradients at the mid-point to the mixed nodal

degrees of freedom at the two ends defining the element surface, let j and k denote

the first and second cyclic permutations of i=1,2,3 (i.e. j=2,3,1 and k=3,1,2), the

projected dimensions and the corresponding boundary length are defined as (see

Appendix A)

ay -y, b =z -z~. 1 = a i  (120)

Also, if the outward normal is dclined as positive (ilure 8). the relttion bet veen

local and global Cartesian (oordinates is 1421

n, 11-b -az-z J

Considering (121) and using chain rule of differentation, we have

S+ OuO u On, a b
u = - -=-u -- ' u (122)

+ s 0 On,  O ' I, ',. 1 ',5
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Figure 8: Local and Global Cartesian Coordinates
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U ( -Q- +a)L -- u 123)7 1+ .1 3 ,z 3 s , a z a n , a z 1 1, + 3 + " ,

where u,,3 (i=1,2,3) denotes the tangential derivatives of u at one of the mid-side

nodes (Figure 9), which can be further interpolated from the displacements and their

gradients at the two ends of the corresponding element boundary, i.e.

3 b 3 .a bus = -- - ,+ -U U + --U (124)
,+3 21 411 41 1 21 1 41 1 k 411

Recalling (100). we have

11 7 1 

1 
4

Substituting (124), (125) and (126) into (122) and (1230, we can express u, u, at each

of the element mid-side nodes in terms of their corresponding normal derivatives un, as

well as the mixed nodal degrees of freedom at the two ends defining the segment.

That is

3a a ab ab
V * 1 2 I 25 XZ I I--= --- u--- U +-- T_ + "S T

i-3 21 412 y. 412 55 Xz 412 45

3a a a h a b 1)
+2 ,  4--u +- -IJr + 7 -- u (127)

2 -11: 41 k 41+ - "

II I j

3b a b bVb
u - 'u+ ,--L- 7s ---- g~r.,

,+ 212 417 s 412"x 4P I

3b a b b2  b a
u +' U Sr -- T - u (128)

21 2k+412 
y
k 41 k 412 2 7 k 4 'SYi(21)

SI I I

Following the same procedure and considering (103), the transformation equations for

v'y, v,, w , w at each of the element mid side nodes are
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Numbering for Element Assembly

" Numbering for Mid-Point Transformation

3

1 2

Figure 9: Numbering of Nodal Points in LCCF-12 Element



3a a ab a b. a b
V A- + - S T,, + " S T
N,2 2 41 z 54 1 41 44 N,

3a a ab a.b ab b.
+2 v. v 2W + ST + $44 - (129)

212 k 412 Yk 412 Yk 412 45 xzk 412 Yzk 1 n,+3
I I I I

3b a b b2  b2  b2

v -- v + V ,I -- , . . . -- S 7-"+ V 41 V 41" 5 44Z+.3 21,2 .4 YI , 4v 4F IF,

3b a b b2  i? 1)
+ , v + , --- T - ( 13()

211 411-~ 41 -11,''-.

3a a a b a b a b 3a
S. .. .-- -- -v., + -,-B .U + - , ,V, + -- (,. --\)O + ,,

+3 212 2 41F 41 41"1 2 1 41 2 33 212

2
a ab ab. ab ab b

w + Bu + Bv + " (S -X)o- + e B (131)
41 2 k 4123 Yk 4122 yk 41 2 33 Zk 21i2 1 ".3

3b. ab b b 2  3b
w -W +--k.W -'B3 u - B 2v - -X)O -

2,+3 212 1 41P 2 J 412 3 ' 412 41 2 21

a b b2  b2  b2  b2  a

412 k 41 2 3 2 - " 412 3 k 212 1 .. . 3

Substituting (127)(132) into (119), the relation between the surface iraction components

at each of the element mid-side nodes and the corresponding displacement normal

gradients is

a- = [T1]. V, + [T 2]r'), 3 +{(T 3 (133)

ns l+3 1,11+3

where
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' ++ --
4

I2b 45 1 44
T,36 -"C26 )M 2n (m 2n-n3)( 45 (C. 3 22) n (m 2n-n 3)c4.4

(C4.5+C 3 6)mn

2m 2 nC 4 4+m 2 nC, 3 +n 3c (134)

3 - n )(4 +(C C 2

2.

,Hi ,.= W A.\\\: ,I A .\\ .,,, . (T,o .u , .. ,.\ .: A.,, . 7 , ,.T .:.C r T1:
I I I ." k "

1 . _I(- in1 ,.--C I .
-I ) H. I H.("

U f 3il (n 4C+mniC ) +m +n-(C e (1316)

1-4 (m 3 n-mn 3 )B C-(C 3 -C)m 3 nB +(C -C )mn
2 - - 3 3 1 13 1l2

with

b am = - - L, n = -  - '  
(137)

I ' 1~

.ind [Tj] is the product of the transformation matrix shown in (119) with the

lollowino matrix [FA]
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214

- a it' ;4I i t AL) i 1

211' -11 : -| 44 1 -I"

3a a hb a b a 2 I L i)

0 oi , 0 0

22 41 41 .11 41v
IT I =

3 a a it ) ) a )
0 ) ) 1 ' 0 - Is4 -

21 1-2 41 41 1- I 41 "

a ) i ) h" ?

_I 41 ) _ 4) L -.----- 5 5

0 0 1 It "i00

allI I

2 1: -I1" - 1 -1 -II

31 i) 1I) a b)

21 4 41 41 41,2

a ai n he c emi en iiL
) 4) ( - () , - *~-- ;4 " (4 .L4

2! 1, ! 1:, 4I, ,

I I

3 h . , h 1 ) " h)
-- 2 LI 44 ' (4 4) - -'li S, - -- 5.4.

21" -II- .i1 .1

.3'4 4 ( 1

3b h" h" d h h

I I

(138)

Rkrramir in (1 33), thc di,,phawctunt ,qrcs l~st(rmah~fl for the no.rma I d i~.pl, .nent

.,uI)cnt%. at e,,.h 3f tht, mid ,Mc li.kie, IIn uhe I ('("' 12 clement ,tt



['1 0, 1 9

w ciI I J

) 1+3 ( +3

or symbolically,

{r, },+3 = [ll]lr',} + +[LI. {r'}, +{S}I (140)

where

Il Ii [l', I (141)

II.] =-[FI [r,], k142)

is) = -[I'll '' (143)

Ilere, [Il], denotes the transformation matrix which directly related the normal slope

quantities at the mid-point, i+3, to the corresponding surface traction components. [LI,

can be regarded as the coupling matrix between the normal gradients and the mixed

degrees of freedom associated with the nodal points, j and k, at the two ends of the

boundary IS), is the local effect resulting from the applied uniform loading e,.

5.3 Finite Element Formulation

The discretized form of (73) can be revritten as
M

f)=E( I . ..Iq' P[,l, ...q, I,.) (144)
2

qi- I

where [K"] is the element stiffness matrix, IF1 } denotes the nodal force including the

local effect due to the uniform in-plane strain loading as shown in (80) for the

free-edge stress problem. {qm} is the set of generalized nodal displacement components

within the element m, and M denotes the total number of elements.
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I order to ha \ c hoth II isplacenct and 1'at lon continuity, along interelement its

veill as interlaminar hounuda .ries. assuming (144) is based on continuous strain cubic

displacement interpolation as in .(CCiF-12 described in 4.3.2, the displacement-stress

transformation matrices derived in the previous section were imposed on the generalized

degrees of freedom. Combining (104) and (140), the generalized displacement

components in the L('CT-12 element were transformed to the mixed type degrees of

1I1cdo n ,,l , \\ :

\\ here

o) ( [(;] ( o o

r] [I. 411-3 o Ilf] 3 ( o (146)

i () [] J l [ .I I o) [11], 0

[14.2 o [I.], o o [1]2

1)= R , R ,I R ,jS1 3'1 S) IAs} (147)

.q'.I u I IV I W . , ,Vw ,11,V1 V,, 1. *V ,2' ,u ,V ,"{q'" {ujvvx 'u ' ' ' I'Iz 2 Y 2 Y 2 '2 '2 'e z

U V .\0 s u .\ ,\\' .0 , .\ k . Al. .\ .W \ .u ,x .w v .u A ,w ' (1 .18)
IN~IV IV

,
3'U 

\

1 1 1.\ \k ,j1 * V I \ . .7 / i I I) \ iu .7 ,4 ,I' u , \\

u v w *r, i u ,cr ,o ' ,o" ,o" o- ,cr o" ,o" ,o" )' (149)
V3' V N W 3 T,, VLI3  z3 or S 1(, I,4' a fill4 o %4 '  nx 7I 7 II (1 9

Each of the [1-, matrices in (146) was divided into two parts to match the mixed

degrees of freedom in (149). In the finite element computation, this transformation

was implemented during the formation of eaich of the subtriangular element stiffness

mitri ; and lhoad \wtol corresponding Ill he I.( (1' 12 element. I'hus, due Ili
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appearance of displacement and interlaminar traction components at the corners Of- tile

triangle ats vell as traction components at the mid-side nodes, a cubic variation of'

displacement and a quadratic variation of' traction were ensured along element

boundary. More importantly, both fields are continuous across the common boundary

between two contiguous triangular elements. Substituting (145) into (144), we have

2

or

n= ( 1 fqmT[K mIq*m1-{q~m }TjRnn}+Cmn) (151)

where

[KY1i=[ If] [K in [Tn'] (152)

IR'~n}=Lv',3T{ FI~{V]T[,K in ptn } (153)

C 1P:1- pK"]l '" ' 111 =constant (154)
2

U.sing global coordinates, (151) Could be v ritten as

f)=1 i T[ Ki*q)~+. (155)
2

Taking the variation of (155) with respect to (q') yields the system generalized nodal

force-displacement equilibrium equations

(1:56)
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The displacement as well as interlaninar stress components were then obtained by

solving the resulting set of linear equations in the standard manner.

5.4 Calculation of Stresses

Solutions of the finite element system gives the three displacement components,

their tangential gradients along the element edges, rotation about the longitudinal axis

and intertaminar stress field at le LOrner nodes o the Q-23 element, along with the

lAundarv' traction compOnents at lie icnter point ol each of' the Q 23 element surfaces.

To retrieve the rest 01 tile displaceinCnt components at each corner node, the

transformation matrix used in (1(M) \\ias reapplied to the calculated nodal point

solution. Having found the complete displacement gradients and hence strains, the

inplane stress components at the corner nodes of the Q-23 element could then be

computed using (115).

The interlaminar or interelement stress components at the mid-point of each

element boundary are merely the traction components directly produced by the solution

of the continuous traction Q-23 element provided a rectangular mesh is used in the

analysis. For determining the rest of the stress components, the normal displacement

gradients at mid-side nodes \were recovered f'rom the nodal point solution using (140).

Furthermore, the displacement and their gradients along the edge at the mid-point were

interpolated from the previously computed displacement components at the two ends of

the segment. Hlaving transformed these displacement gradients from local to global

Cartesian coordinates, calculation of the remaining strain and stress components at the

mid-side of each of the element boundaries is direct.
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5.5 Boundary Conditions of' a Quadrant of' the Delamination

Specimen

For the f'ree-edge delamination specimen. because of" symmetries in thle laminate.

only one quadrant of an x~constant plane was considered (Figure 2). Along the

boundary, either displacements or tractions are specified at each point.

5.5.1 Boundary Conditions Along Lines of Symmetry

S.%Illlet-.vof ladng s vel ,;geometr% lu the mid-plane implies th l te

dSfis laeent funictions sat isi'v the 'ol low inc c mit t ion

L. = v.,.) ~,Y) (157)

X Z)= V YZ)( 158)

Using chain rule of differentiation,

-Vz(y,-z)=V(y,z) (161)

W()=W (y,z) (162)

W( y,o)=o (163)

W V (YO)L Z(V,O)=V (YO)() (164)

Fromn (5.84), -y,,y,0)=y5 ,(y ,0)=, and consequentlY, f'or the layered orthotropic material.

7i ,(,O)r z(y,0)() (165)

Also

(W Y- V y,0) =O0
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Invariance under a rotation ol 180) degree about the z-axis through the center of the

specimen implies

U(-N',z)=-U(y,z) (166)

V(-y,z)=-V(v,z) (167)

W(-Vz)=W(y,z) (168)

(166) and (167) lead immediately to

L((),i.)= \((),..)=()  (169)

loi A1 Z. MiIld ct jLIC-tl'

L1 (f,/.)=\ ((L/)=0 (170)
/ /

B% chin rule () dilferentiation, (166) yields

--W y (-y,z)=w Y (%.,z) (171)

Hence, for y=O

Wy(o,z)=o (172)

(170) and (172) imply y,,(0,z)=y,,(O,z)=O. Hience, for the layered orthotropic material,

rz(0,z)=r w(O,z)=O (173)

Also

(\\v .- \ )(o .z)(

(omhining (163). (164) (165), (169). (172) and (173), along with L(0.0)=O in order

to pre ent rigid-body displacement of the laminate, the continuous traction finite

element model for a quadrant laminate under consideration should satisfy the following

conditions along lines of symmetry

U(0,0)=U(O,z)=V(O,z)=W(y,O)=W (v,O)=W (O,z)=O (174)

T (V,() )) r (0,/)=T" (O,z)=O (175)
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5.5.2 Traction-Free Boundary (ondiltionS

The trilctOn I re! h0ullkd lrv cOndMi1'1 ,sseiated v ith one quadrant of tile laillllItcd

specimen are

r z(v,lt)=r (v,l l)=o'u ,i t)=0 (176)

at the top surface, along with

cr (,/.=r B~z)r (~z)l) 177)

',l te I.0v.. 1, I edee. I Ic 2lH ,ntl 211 d,,n ic te tolal .\ idth and thiekncs",

\ ~p LI ' HV the I an [,!1ii, ed spe:'.l'! e . I nel] the '.m]l ahto lt
,  I a;ctionI (.) "23 m l~li.]

tla t~io) e l'"hu a VLL \ Lonldjitons siv. \ . 11 in 1 7W L,iln hC ldeCICal L. \ satisfied lot nI*

pnts on the top S rlclell. i\ \10er. de o li e Lh k o iI)l.ne! Stres , 
Co polenTT s

nodal degrees of freedom, only the last condition sho\\ n in (177) can be specified at

those element corner nodes along the lateral free-edge. To completely satisfy the

traction-free condition along the lateral free-edge, the following device was developed.

In otier to enforce the remaining two inplane stress-free conditions in (177), it is

necessary to express these in terms of nodal point degrees of freedom. This results in

a linear relationship between tile degrees of freedom at nodal points on the free edge

The stress f-ee condition can be \vritten explicitly as

(" =)= ' Ce +(le, - (-. V- + (17S)

S=)=( 'H e +( +V, +(? u (17W

or symbl'ically

e

C C C w'1 23 C_ r2t (18o)101 C f, 36 26,(
u
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\ here ( arc compkmcn , lif I h I iil In e- ma lrx deli ned h\ (116). Solvinv above

equation, the in pla ie sl r in com ponents I1,. can be ex pressed in terms of

interlaininar normal ,train xA,, bly

\ here

((*= _ (( -(' ("
I

1 82

I • ,, --- L I -2 3 I'

and

2 C26-C (183)
S22 66 ~26(13

Substituting (102) into (181) for w, we can further relate u. and v,. to the

interlaminar normal stress component cr through the following linear relationships

u =P1 +p~e (184)

, = + q e . (1 85)

p = -[ ( 1 8 6 )

P,= 0(i 11 -1 12 12 B+I22BI+11) (187)

qI 1 v188)q1 -[1 (S -X)] 18

=-(I1 I1 -I I 1+ +1 + +1) (189)
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and

B = 1-1 13 -I 1 :(190)

Again, 13t, 13, 133 and \ occurring in (186) through (190) have been defined by

(96)-(99). Thus, the variables associated with the nodal points of the free-edge in the

lateral continuous traction Q-23 element are no longer independent but related through

(184) and (185). Incorporating these linear relationships in the displacement-stress

tran.-Of'ormalions lh('\\f in (1)-4) ind (14( W)I v clekmcn, on? ihe lateral boundarV implie

satiskL 'tion l the I 'rn'lh11, I Ic hvLundar\ t.nddins (1771. The transformation beconle

U 1 0 0 00 (0 LI 0

\ 0 1 0 0 0 0 0 0 q q eO (19

0 0 1 0 0 0 1 0 0 0 WY 0

U 0 () 0 0 0 0 0 0 p U e

vyy p2 e) 11

u z  000 00 0 0 45 44 0 r 9 0
W 0 0 000-10 OOs V% oy

w 0 0 0 0 0 0 0 0 r o" r2e

where

r = 3 3-X+Pq I+B p I  
(192)

r2 =1 +Bq ,+l p, (193)
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SECTION VI

ANALYSIS OF FREE-EDGE DELAMINATION IN

LAMINATE COMPOSITE SPECIMENS

6.1 Introduction

Continuous traction finite element formulation developed in the previous section

was applied to obtain an approximation to displacement as well as stress fields in a

free-edge delamination specimen. The analysis consisted of two parts. The first

consisted of solving four-ply symmetric laminates. The purpose was to examine the

credibility of the continuous traction finite element model by comparing the numerical

solutions with those from Pagano's analysis based on a generalization of Reissner's

theory. At the same time, the deficiency in using the continuous strain free-edge

stress model described in Section IV was examined. The second part consisted of

studying of edge delamination tendency in two classes of multi-ply laminates subjected

to longitudinal loading. For laminate specimens with stacking sequence of

[(0/-0)r/90n) 2L, displacement and stress fields calculated from the continuous traction

Q-23 element were compared with those obtained using an overlay procedure with

constant strain elements [451 and with experimental observation [46]. For the

[(W/-)I90]/ laminate specimens, the continuous traction finite element code was used

in conjunction with some well known anisotropic failure criteria [47-501 to predict the

onset of transverse cracking and the onset of edge delamination in various laminate

specimens observed in experimental data [511. The purpose was to evaluate the
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SU itahi lit Ao thes.e failure Lriteriai lr aippli.iatin to the I ree-edtle delamnination problem.

Because of sYmmretries III the laminates, ()nl.\ onc quadrant (F igure 2) was considered

in each case.

6.2 Four-Ply Laminates

In this section, anal sis of t wo long symmetric laminate strips made of

£raphilte epovy malterials. \\ ith f iber orientilt ions of1 1A; 45] and 10 90] under Un11I orm

11inplae stradin III hle lonitudIil Lhcdire I i dt-s.ribed. lit. relaition betwkeen laminate

%\idh a i nd thilckness %k; s 2h 10l11 I'~o 181. 11In te analysis, each ply \\as

idealiz.ed as a homogeneous. elastic orthlit opil. Faeia. Ior comparison purpose. i lie

material properties assumed here followving Pagano's wvork [81

1. 1 =_20IOfOpsi

E 2 2=E 3 3 = 2.1x 106 psi

G12=C 13= 23= 15X06psi
V' 12 =V13 V 230.21

The subscripts 1, 2 and 3 correspond to the longitudinal transverse and thickness

directions respectivelv. A 144-element model as shown in Figure 0l0a) was used to

discretize a t.%pica I x=constiint plane. Numerical results based on the continuous

tra'.tion Q 23 and continuou01.s strin Q 23 elements wvere compared with Pagano's 181

analytical solution.

Figures (11) through (23) illustrate comparisons for both stress and displacement

fields at specific locations for the angle-ply and cross-ply laminates using different

solution techniques. The value of N in these figures corresponds to the number of

sublayers used in Pagano's theory. Thus, X=6 indicates that each physical layer of

thickness h was modeled hy three sublayers eachi o1*ftlikn-ss h '3. while V2 denotes
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that each physical la'er is treated as unit IS. A,o. the calculated disphlcements and

stresses were normalized by the applied unilorm ,train loadin e, which has been

taken as unit in the present analysis.

6.2.1 Angle-Ply Laminate

Figures (11) and (12) show the distribution of a, and 7-,, along the width of the

lam inate a tile tenter line of the top (-15 decree) liaer. The results obtained usin, n

tile conlinkln us ', ion .12. elemeltl (i]tietd ui lt \ ,%l \sitll those of Pa,_ano's \ (,

solutios a iross the eltlle \\ idth o the 1]ate,1 C.

A cor lirison of tlie shear siress I7, 1 distribution along the interface ofI Ihe

45 -45 layers (li.ure 13), indicated that the continulolIs traction Q-23 solution hid

sharp rise toward the free-edge similar to Pagano's solution with N=6. Satisfactory

agreement was observed between these two solutions for stress across the width except

at the free-edge boundary where continuous traction Q-23 somewhat underestimated the

singular stress. Figure (14) shows the through-thickness stress distribution of T,,

calculated from both continuous strain and continuous traction Q-23 elements at the

free-edge of the laminate. VerY close agreement was generally observed between these

t\\ n solutions throughout the thickness. Also. at the interface of the 45-45 lavers.

continuitN of the interlaminar shear stress was ensured [or both cases. This is because

of the rotational symmetry about z axis in the particular angle-ply laminate considered.

The singular behavior of r,, which is highly localized at the interface betveen 45-45

layers, is noticeable. The distribution of o, along the interface between 45' and -45'

plies, which was not indicated in [81, will be discussed in the next section.

For the axial displacement distribution across the width of the top surface,

continuous traction Q-23 results ompared well %Nith I'aigano's N-6 solution (FIgure 151.
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I )i ure (16) sho\\ s the th rug h-th i k ne1s dLsi rihutIOn of axial displacement based on

continuous strain as Well as continuous traction Q 23 elements at the free-edge of the

laminate. Again, these twvo solutions matched well throughout.

6.2.2 Cross-Ply Laminate

Distribution of Cr, along the width on the central plane of the [0/90). lamina:j.

shown in Iig ure (17). indicates i sharp rise nea r the r;ce-ede boundary. Sol a ,-

obtained lrom llhe C,,1111iou ut, cicion (Q23 ekmii- nearly coincided with lait "

solutwin. over The entire w\idlh of the lamina'e.

F igure (18) shows the variation of or alon lhe interface between the () and (YO

plies. I)ue to the presence (f the discontinuity in elastic , -ties, a singular stress

behavior would be expTccted at the free-ede. On the Y .ary, result from the

continuous traction Q-23 element had a steeper gradient than that of Pagano's theory.

Apparently, one possible reason for this discrepancy is that, in Pagano's analysis, each

physical layer could be modeled by at most three sub-layers. However, in the finite

element analysis, the thickness was divided into eight elements. If a coarser

discreti.ation were to be used, say 4X18, a, calculated from the continuou traction

Q-23 element would possibly agree quite well with llagano's solution at the free edge

interface. ligure (19) sho\vs the influence of through the thickness refinement of

mesh on 0r. IFigure (20) shw ws tl)rough thc tIick ness distribution of o, at the

free-edge of the laminate. In tt- vicinity of the interface, the continuous traction

Q-23 element, enforcing continuity of o, at the interface between differently oriented

layers, gave a stress distribution quite different from that given by the continuous

strain Q-23 majilvsis. Away ,, om the interface the two sets of results were close.

Also, the interlaminar stress (T., was observed tn ha\e a, maximum value in the interior
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of the 90)deg layer closer to the interface vith the top layer. liowever, in both cases.

the solutions displayed oscillatory patterns near the interface. This could be due to the

finite element mesh usei being not fine enough to approximate the steeply varying

stresses associated with abrupt change of material properties.

Values of r , along the interface between the [0/90], layers, calculated from the

continuous traction Q-23 element (Figure 21). showed satisfactory agreement with those

calcula ted hy Paainu. This is bec; use the .o- tinuouls traction Q-23 element exa,.tl\

satisfies tile raclion- free hOLuldariv condition similar to Paia no's theory. IIO\neer. .n

oscillator\ error was ohbserved near the free edge. AppilrentlY. further mesh rel'inemncn

along the y-direction is required near the free-edr'e in order to approximate the s;nVui!;r

stress behavior. Figure (22) displays through-the-thickness stress distribution of r

calculated from both continuous strain and continuous traction Q-23 elements at the

free-edge of the laminate. Apparently, satisfaction of the traction-free boundary

condition associated with the continuous traction Q-23 element represents an

improvement over the continuous strain Q-23 element.

Comparative results for the variation of trans ,erse displacement along the top

surface of the [0/901, laminate are shown in Figure (23). Excellent agreement was

observed between results using the continuous traction Q-23 element and Pagano's N-2

solution.
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6.2.3 Effect of* Traction-Free Edge on the Solutions

In order to investigate the effect of requiring the satisfaction of a traction-free

boundary condition on the finite element solutions, the continuous traction Q-23

element was employed with only the requirement that T.,=0 along the lateral

free-edge of the four-ply laminate specimens. In other words, the displacement

constraint conditions developed in (188) and (189) used to specify the in-plane

stress-free boundary conditions were noi imposed in this model. For convenience in the

f',lovint, comparisons, this is designated as coni n uous traction (partial).

IVigu re (24) shows the distribution of ",,, along the interface of the 45/-45 layers.

Solutions calculated from the continuous traction (partial) had a steeper gradient in the

vicinity of the free-edge than that of previous continuous traction Q-23 element. A

similar observation is made for the variation of o- at the interface of [0/901 laminate

(Figure 25). Thus, it is concluded that the nonimposition of the conditions

01,=O and Ty.=0 would overestimate the magnitudes of the interlaminar stresses on the

interface near the free-edge. However, the nonsatisfaction of these two traction-free

boundary conditions had no significant effect on the displacement field in the laminate

specimens. Figure (26) shows the solutions, for axial displacement distribution across

the width of the top surface in the [45'-45], laminate, obtained from the continuous

traction (partial) and from the continuous traction Q-23 element which satisfies all

traction free conditions at the free-edge.
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6.2.4 Effect of Mesh Refinement

The analysis of the four-ply laminate specimens wvas originally carried out by

using the continuous traction Q-23 element with a uniform 80-element model as shown

in Figure (27). However, for reliability of results, the finite element mesh must be

refined in regions of steeply varying stresses. This results in the present analysis

using the 144-element model which indeed was obtained by dividing the two elements

closest to the free-edge in the 80-element model into 10 elements along the .- direcTikn.

To study the effect of mesh refinement on the continuous traction finite elenient

solutions, comparisons were made for the stress distributions in the four-ply laminate

specimens between the uniform 80-element and the locally refined 144-element models.

Figure (28) shows the distribution of r, at the interface of [45/-45] laminate

based on the 144-element model. A steeper gradient of r, was observed on the

boundary as compared with the result using 80-element model. A comparison of 0r

distribution along the interface of the 45/-45 layers, indicates that the 144-element

model had a compressive finite maximum value at the free-edge rather than a tensile

quantity from the 80-element model (Figure 29). This indeed has demonstrated the

inappropriate sign of o" shown in Figure (1) based on the perturbation technique as

well as finite difference method. For variation of or, along the interface of [0/901.

laminate, Figure (30) indicates that a singular stress behavior was properly reproduced

by the 144-element model and did not show well in the results based on the

80-element mesh.

Use of 144-element model might still be insufficient to approximate the singular

stress behavior. One example is the ry. distribution, which had an oscillatory pattern

near the free-edge along the interface of [0/901 laminate, as mentioned before. To
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Figure 27: 80-Element Model
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overcome this, a more refined mesh (208-elcment model) obtained bY further dividing

the 1%,o elements closest to the free-edge in tht- 144-element model into 1() elements.

was used in the analysis. Along with the results calculated from 80- and 144-element

models respectively, Figure (31) indicated the improvement of the T, distribution along

0/90 interface over the boundary layer region as more refined elements were used near

the free-edge. However, regardless of mesh patterns used, there was an oscillatOrY

error in ., in the tw elements next io the free-ed2e.

I Zigu re (32) sho\ ks ihrOugh lhe-tIick ness d0istrbtions of o at the Irce-edc o01

)01(.). laminate based on the 1,14-element model but with finer mesh neii the

interface (I igure lob) and its refinement (288-element model) in the thickness direLtl.

It is observed that the oscillatory error near the interface was reduced by using the

refined 144-element model and was nearly disappeared under more refinement over the

laminate thickness. Meanwhile, the maximum value of o7, within the 90-degree layer

was moving closer to the 0/90 interface.
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6.3 Free-Edge Delamination in Multi-Ply Laminate Specimens

Analysis of the four-ply laminate specimens described in the previous section

demonstrated some validity of using the proposed finite element procedures in solving

free-edge effect problems. Both continuous strain and continuous traction Q-23 elements

had similar prediction on the displacements and inplane stress distributions, which also

compared well with Pagano's analytical solutions. lowever, discrepancy betxveen

continuous strain iand conTinuoUts 1ractin finite element models was apparent for the

interlarminar stresses near laminate interfaces between differently oriented layers or nacr

the traction-Iree boundary. I)ue to 1he fact that st ress continuity across interhnainia

boundary as well as traction-free boundary condition are exac'ly satisfied in the

continuous traction Q-23 element, solutions obtained from this approach were expected

to be more reliable than those from the continuous strain Q-23 element. In this

section, application of the continuous traction Q-23 element to investigate the free-edge

effect as well as initiation of edge delamination in the multi-ply laminates is described.

6.3.1 Analysis of [(0/-O)m/90y 2 Is Laminates

Four types of laminates with predetermined fiber orientations [46] were used in

the present investigation. These are

Type Stacking Sequence Width lY thickness Plies

A 1(49.8/-49.8)5/901, 1.0 in 0.00506 in 22

13 [(30.8/-30.8)S/90], 1.0 in 0.00508 in 22

C [(25.5/-25.5)S/90], 1.0 in 0.00505 in 22

D [(47.9/-47.9)0/90], 1.0 in 0.00499 in 42

The material used in the study was AS4/3501-6, graphite-epoxy, and the elastic

constants were [46]
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1: =19.26X 10'psi

l=1.32xXO' psi

G 2=0.83x10"psi
V12 = 0 . 3 5

All the specimens have been investigated both analytically and experimentally at

the AFWAI./AFi)I. [461. The l)elamination Moment Coefficients (DMC) were derived

and used to e'aluate quantitativei\ the delaminalion tendency of the laminates. A Iso,

generalized constant strain element \as applied to analyze half of the ,%,idth of the

laminate specimens. In the experimental aspect, \arious techniques including Trans\ erse

Strain (iages, ('racked Silver Ink Instrumentation and Acoustic Emission Instrumentation.

etc. were used to determine the onset of delamination and to validate the analytical

resu I ts.

6.3.1.1 Numerical Evaluation

A 154-element model shown in Figure 33(a) was used to discretize one quadrant

of a typical x=constant plane in the laminate specimen Types A, B, C, and a

294-element model (Figure 33(b)) was used for speicmen Type D. Each ply was

modeled by a single element through its thickness. Interlaminar stress field within

various laminate specimens for an applied longitudinal average stress of 1(X) psi were

com pu ted.

Comparisons of or, distribution along the mid-plane of various multi-ply laminates,

(Figures 34-37) indicate that the continuous traction Q-23 solutions had sharp rise

toward the free-edge similar to constant strain element solutions [461. Satisfactory

agreement was gererally observed between these two solutions for stresses in the

vicinity of the free-edge except on the boundary where the stress calculated using the
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Q-23 element was distinctly less than that From the constant strain solution.

However, the or values calculated from the constant strain element were extrapolated

from the interlaminar stresses at z=O obtained by Lagrangian interpolation of the cr

values at the element centroids. This is unlike the continuous traction Q-23 solution

where o" at the free-edge was directly calculated as nodal degree of freedom and

would be expected to he more reliable.

IFi4,ures (38)-4I 1) shi\ lhe thlroli-thc thickltess stress distributions of - and \

calculated from con tinULtOUS tr action () 23 element a tihe free-edge of various laminate

specimens. It is observed that for tile same applied axial stress, specimen 1) had tile

largest value of normal stress cr at the free-edge, followed by specimens A, 13 and (U.

Figure (42) illustrates this. The slope discontinuity of o-, at the interfaces of the

free-edge shown in Figures (38)-(41) was possibly attributed to the material as well as

geometrical discontinuities in that region. Figure (43) indicates that much smoother o-,

distributions through the laminate thickness were recovered within the angle-ply

laminae at a small distance from the free-edge. In fact, with further refinement along

the free-edge. the solution of (T, on the free-edge is even better. Figures (44)-(45)

show the solution for cr at the free-edge and at v=0.495 for specimen A with each

edge element being refined into four elements along N direction. Also, figure (46)

shows the functional dependence of longitudinal stress or as well as interlaminar

normal stress or on the fiber orientation, respectively, for the [(O/-0)/90] laminate

under the same applied loading. The ordinates of these curves are the respective

values of a, and a, at the intersection of the mid-plane and traction-free edge of the

laminate. Results obtained from the continuous traction Q-23 element indicated that

both o-, and a' attained their maximum values approximately in the fiber orientation
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o = 30'.

The shear stress T distributions were similar for these specimens, and their

magnitudes are relatively smaller than the maximum normal stress o Itowever, the

existence of r,, evidently reflected a defect of the numerical model adopted in [46] in

which the delamination specimen was treated as an axially symmetric problem in

which T,, was inherently assumed to be zero throughout the laminate thickness, It

was noted that oT_ distribution had a slope discontinuity at the mid plane surflace

within the 90-degree layer. ']'his does not appear to be reasonable fr the present

symmetric laminate specimens. Presuming that this \as associated with the use of a

single element through the thickness of 90-degree layer being insufficient to

accommodate the mismatch at the interface between angle-ply and cross-ply laminae, a

study was carried out refining the mesh near the midplane. Figure (47) shows the

dramatical improvement of o', distribution near the mid-plane surface of specimen A

as increasing number of elements was used in the discretization of 90-degree layer. At

the same time, the maximum value of o', in the interior of the transverse layer was

observed to move closer to the interface with the angle-ply layer. Again, if both the

90-degree layer and the free-edge elements were refined, the improvement of o-. was

not only on the 90-degree layer but also on the entire laminate. Figures (48)-(49)

show this improvement.

Comparison of the interlaminar shear stress r.Y at the center line of 90-degree

layer along the width of various laminate specimens are shown in Figures (50)-(53).

Solutions from both methods indicate that rY. approached finite maximum values in the

vicinity of free-edge yet the traction-free boundary condition could only be satisfied by

using the continuous traction Q-23 element. The maximum values of ' from the
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two models \ere comparable. The constant sirain Iriangular element approximation

departed significantly from the Q-23 solution in the vicinity of the free-edge. This

could largely be due to the nonsatisfaction of the traction-free boundary condition.

Figures (54)-(57) illustrate through-the-thickness stress distribution of T., along center

line of the second element from the free-edge for various laminate specimens. The

reason to choose this site for comparison was because of the singular stress behavior

being displayed in the finite element discreti/.ation for both methods (1igures 5( 53).

A close aegreement \\as generallN obser\ ed hetween these two solulions. The Colninuous

traction Q-23 analv\sis sho\ that tle ma iocinc n r o nUled at the interface het Xeen

the negative angle-ply and ihe 90-dcoree la\crs for all the specimens. The consiani

strain element does not have the capability to predict this. It is also noted that for

the same applied axial stress, specimen I) has th, largest value of r,, followed by A,

B and C, similar to the observation for o-.

Table (2) shows the values of interlaminar normal stress o at the interface of

the free-edge for laminate specimens A, B, C and 1) based on constant strain element

and continuous traction Q-23 element, respectively. The ratios of the normal stresses

o' to the relatively minimal value among them are 2.11 : 1.32 : 1.0 : 2.47 for

constant strain element, and 2.12 : 1.33 : 1.0 : 2.39 for continuous traction Q-23

element. Thus, the normal stress ratios for specimens A, B. C and 1), calculated rom

these two finite element schemes are comparable with each other.

Figure (58) shows exaggerated views of the displacement fields based on the

continuous traction Q-23 element in specimens A, B and C. Figure (59) shows the

distortion of Specimen 1). The maximum displacement in the y-direction calculated

from both constant strain element and continuous traction Q-23 element shown in
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'FablIe 2: (?onparisons of Deaidmatioii Tendencv f'or Various Speimens

(unit :psi)

Classification Specimen A B C D

Value 107.74 67.65 51.12 126.22

(7,from Constant
Strain element

Ratio 2-11 1.32 1.00 2.47

Value 82 07 51 5-i 38.68 92 43
or, from Continuous ______________

Stress Element
Ratio 2 12 1 33 1.00 2 39

Nlote : Ratio=
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(a) Lindeformed Model of' A, B1 and C' Laminates

(b) Deformed Model of' A Laminate

(c) Deformed Model of 13 Laminate

(d) Deformed Model of C Utminate

Figure 58: Finite Element Models of A. B1 and C Laminate Specimens
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I I IIL'"

(a) Undeformed Model of 1) Laminate

Ii

(b) Deformed Model of D Laminate

Figure 59: Finite Element Models D Laminate Specimen
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Table (3), were found to he in reasonable agreement for all these specimens. Also,

from these figures, it is observed that under the ;ame applied axial stress, specimens 1)

had the largest distortion near the free-edge, followed by laminates A, B and C in

descending order. In other words, specimen D had the greatest tendency for edge

delamination among the four specimens, and the delamination would set in at the

lowest applied axial stress. This again confirms the prediction based on tile

interlanminar normal slress T \%\hich had the 1,,rgesi %alues for specimen D as show n

in Table (2). Nased upon ahove laysis, \\C L1c on de that both the distortions and

the v alues of normal stress CT. near the free-edge of the specimens calculated from the

continuous trlactiOn Q-23 element are consistent with those of the constant si rain

element [46] which is much more economical to implement.
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'Fable 3: (Nun I~i'S~ns f M \axI m L in ran;\ erse I )el'oi-nation For Various Specimien.,

(1 in)

Classification Spec' men A B C D

Value 0.1309 0.1032 0.0829 0.1935
Constant ___________ _________

Strain Element
Ratio 1.5789 1.2-448 1.00 2.3337

Value 0 1171 0 0888 0.0704 0.1638
Continuous ___________

TrcinEeet Ratio- 1_66.A _1,2619_1100.. 2.32741

Nlote :Ratio=V
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6.3.1.2 Analytical-Experimental Correlation

An experimental study was conducted at AF\VAL/AFFDI [461 to validate the

analytical results. Part of the test results are summarized in Table (4), which gives

the specimen type, strains, and stresses for the initiation of edge delamination

determined by transverse gages, silver ink, acoustic emission and visual observation.

'lhe table also contains average axial stress for initiation of edge delaminalim

AILcallated from the continuous traction Q 23 element. The axerage initial delamination

stresses for laminates A. B. and C \ere found to he 19.2. 23.3 and 26.4 (ksi).

respectively [45]. The corresponding finite element solutions \-.ere 15.883, 25.817 and

29.935 (ksi). To calculate these values, the nodal axial stresses xvithin each L.(']1-12

triangular element had to be recovered from the stresses calculated along the boundary

of Q-23 quadrilateral. The axial loading applied on each triangular element could then

be computed by integrating the nodal stress values over each triangular area. Having

assembled the element axial loading over the whole system, the average axial stress

was obtained by dividing the total axial loading by the total cross-sectional area.
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TFable 4: 1 xperiniental ReSUR l0]- VI11U Lr\riIarniinate Specinmens

Laminate Specimen A B C

Axial Strain

10 6 6099 3300 2900

Initial Matrix Cracking Stress
( ksi ) 15.5 21.7 25.1

- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4

Cages 120.4 23.7 22 1

Initial Sil':,er Ink- 17.2 24.6 24 9
Delamination Acoustic
Stresses Emission 19.2 23.2 26-1

( si )
Visual 18.1 23.5 25.9

Average Stress Calculated
from Continuous traction Q~-23 15.883 25.817 29.935
element (ksi)
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6.3.2 Delamination of' [(O/-0)2/90]s Laminate

A sequence of tests had been conducted [511 to monitor the material damage in

[(W/-0)2/90, laminate specimens under incremental loading. The value of 0 were

50, 150, 250, 350, 45'. The material considered here was T300/5208 graphite epoxy

\vith the lollowing elastic constants:

17 1=22X10"6psi

1>,=l.54x1(O psi

6 =6 23=().81 × 1()psi

) 12 V'.3=0.28

The thickness of the ten-ply laminate averaged around 0.06 inch with width equal to

1 inch. All these laminate specimens had also been analyzed [51] using the assumed

stress hybrid finite element model [52] in conjunction with the quadratic tensor

polynomial failure criterion [53] te predict the onset of transverse cracking and

delamination. In the present study, continuous traction Q-23 element with a uniform

100 element-model shown in Figure (60) was used to analyze one quadrant of a

typical x=constant plane in the laminate specimens. The calculated stresses along the

traction-free edge were then substituted into the follo\\ing failure criteria to determine

the possible sites for initiation of transverse cracks and delamination.
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Figure 60: 100-Element Mode]
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6.3.2.1 Anisotropic Strength and Failure Criteria

With macroscopically homogeneous but orthotropic materials, development of a

strength theory has been frequently accomplished by extending one of the isotropic

analyses to account for anisotropy. Since strength theories are used primarily to

predict onset, rather than mode of failure, the macroscopic viewpoint will predominate.

It has been stated [53] that all the failure criteria are the degenerate cases of the

tensor polynomial failure criterion

I o10+F1o',o'j+F ijkoojo-k+.... (194)

or, explicitly

Fo- 1 '+ F 2 + 303 +21 12c 1 2+2F 13 0Or 3 + 21:2,03 O 3

2 2 3 2 2 2

+F,-+ 22o> F3 r2+ 4a4+75 ,5+ 6( ...,1 (195)

Here, ori are the stress tensor components in the material coordinates and F,, F,, and Fi,

etc. are the components of strength tensors, all components are referred to the material

principle axes. In (195), terms associated with o'T. or., and o which are

F 41 F.. and F6, are taken to be zero since shear strengths are the same for positive and

negative shear stress. It is also assumed that there is no interaction between shear

stresses and normal stresses, thus F,6, F2, F3 6 etc. become zero.

The strength and failure criteria considered in the present study include the

maximum stress criterion, maximum strain criterion, Hoffman's criterion and the

Tsai-Wu criterion. The reason for choosing these criteria was not only their popularity

but also because they include unequal tensile and compressive failure strengths.
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Maximum stress criterion

Failure of material is assumed to occur i1 any one of the folloxking cond]t,- ..i is

satisfied [47]

0'i>XT; (T2> YT 0"3>ZI ~T 2 T; 3 T (196)

o-4 >R; o"5>S; or6 >T

where or, Orp. a are the normal stress components; o-,. o-51 a', are the shear stress

cornll iloeltS: , Z, are tle ]aLliinl n norn-ld ;iremn, hs in the x, v. ' directions

respek.tix ei'; and R, ". T are the shetr sIrenjtlls in the vz, xz and xv planes,

rehectixci . \\hen or. .-... (T are Lwmlpresix e. lhey should be compared with

, and Z,, the normal streneths in compression in the x, v and z directions.

Reddy [54] stated that the maximum stress criterion could also be expressed in the

form of tensor polynomial criterion as

(0- -XT Xo- 1+X.XO2-YTXU 2+YXo' 3 -ZTXU3 +ZC XOa--RXo 4 +R)

(0-S-SXo-5 +SXo- -TX- 6 +T)=O (197)

Comparing (197) with (195) and ignoring those higher order terms, the strength tensors

are [54)

1 1 1 1 _ 1
i \ XT N ' 2" ' " Z. Z .

XF C Y.I YC Z.I zU

I 1 IC

(198)

1: 1 1
1:44= 2' :55- 2 6(, 2

R S T

FIF2.. FIFI FF
S--- - , F,3=- 2 3
2 3 2 ' 3 2

and the remaining strength constants are zero.
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Maximum strain criterion

Failure is assumed to occur if one of the following conditions is satisfied [48]

1 > XT ; E 2>)"T; E 3>ZT 
(199)

E4 > R,; f s > S: E 6 >F f

where Ep, E2, C3 are the normal tensile strains in the x, y, z directions respectively;

E4, E', 6 are the shear strains in the yz, xz and xy planes respectively; X,,, )',,, Z,

are the tensile -train sircngtlis in the x. '\, / directions and R. S'. T, are the shear

strain strengths in the \z. \/ and xv planes respectively. A ain. expressini, thc

criterion in the form of tensor polynom ial (195),

(EI-\,.,)(6+\ XE--)'r. XE2+' )(E3-Z.)(E +Z( XE -Rt )( E +.

I * . F< C 3 1 A ( 4 4

(E--S XE +S XE ,- XE+'r )=o (2X)

Expressing strains in terms of stresses via the compliance matrix for orthotropic

materials, (200) can he expressed in the form of (195) and we have [54]

=FA S A I S. A

F +=l+- :2 +- _F3
22 33

S 5 12FA +FA+2 3VF.
S I--2s 3

3 S I 2
i. S)2.. SS1.1 .1,

" " S,, SA __S

-)- 1  
1 " 2 . - - 12 13 A:A

l -- XC S,2 Y T Y C 33 Z TC 533 22 2233

L (S 1 2  1 +(LI )2 S 1I A A S 23 -A A SI2S 23 A -A

2= ) + F--- F2F F.
F T )' C 3 II T 33 S1133

S L- 2 21+L3) S3IA.A 3 -AlA_ 13 S23 -Al.A
IF + ____.3 ZJ.Z S X..X Y. Y S S . S S 2

SC 1 I 2 i 2'



1:44"= 2 F,- = 2

F S1 2  '12 1 , _!23 1
F12  Sl1 XTSc " T 2 ZTZCI IXT-C$22 YTYc S33

_1( S12 +1)AFA 1 (S 3S 2 +23 ),A A_ S12523 + S.L3 A A

2 SS 2 2  1 2 
2 S 1 S33  S3 3  2S 3S 3 3  2 3

, 1 __ 1 .,1S ,3 1

113 + +
S3 X X c  S Z.Z(. S y*

l( A_ ++ ... (. 1. 1 (F+Al 2 + - )lA 1:
-T ~ )l , ] ' - -- = -  ' T s _ + -

3 3 S " 22  _ 2 2S 3  s 2 3

y 12 3 + 2 3 + 1

23- 2 2 YTYC 533 ZTZC S 2 XTXC
I I

1( S23 +1AFA 1 S12S23 S A-A A 1 S23 SI3 Sl)2 FA.A---- I )F2F3--- & + )FF --- .. +--)F1-. (201)
2 S 22S 33  2 SIIS 22 Sl 1 2 251S33 S I 13

Here, S, (i,j=1,2,3) are the components of the compliance matrix, and FI, F A F A are

the expressions given for F, F2, F3 in the maximum stress criterion.

Hoffman's criterion

Hoffman's criterion [49] is a special case of the tensor plynomial criterion for the

following choice of the parameters F, and 1,:
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= 1 _ 1 _ 1 ] 1 1

1 F 1

; I _ _33

I:I ; 22- yyf ; :3 ZTZ"
Xr X ( T YC r C

F44 =R1---; FSS= 1;F =1-'' 66 T2
R I I I T (202)

F12 = - ( - -! -- + + T - )12 2\X YTY ZTZ

I _ ( I + I 1l~ 2 X.1X Z.rZ( ~ Y

=: - I ( I- -+ I
2 2 Z .Z1. Y .Z ( \ .I

Tsai-Wu criteria

The Tsai-Wu criterion is given by

lF,,+Fijo0 J>1 (203)

where

F1I 1 F 1 F 1F -T 'C -r -c Zr Z

F 44 1 1 ' ;Ft6
R C- T-

F44  - -R 2 F ss $ 2; F = '2

1 (204)

2 fXT -\ Y

__1

2 r\T\N(Z..IZ,

F 2 3 =-
2 / YTYCZTZC

Here, it is noted that the maximum stress and maximum strain criteria involved

several separate equations, and there was no allowance for interaction of the stresses or

failure modes. The Hoffman criterion and Tsai-Wu criterion, however, do provide for

147



interaction, and the interaction is fixed. That is. these failure expressions are not

invariant with respect to coordinate system. As expressed in terms of quadratic tensor

polynomial shown in (202) and (204) respecti\ely, the only difference between these

two criteria was on the determination of strength tensors F,2, F13, F 23.

6.3.2.2 Onset of Material Damage

Fach laminate specimen was tested individually in an electro-hydraulic.

SCr\ Lcon tr1 ed closed loo1p testing machine 151]. The strain and nominal stress at the

1irst siuht of transverse cracking and Onset of delamination are summarized in Table

(5).

The measured strength (ksi) of T300,'5208 graphite epoxY are given by [501

Longitudinal tension : X1. = 210

Longitudinal compression : Xc = 200

Transverse tension : YT = 10

Transverse compression Yc = 21

Shear in 1-2 plane S = 13

It is further assumed that Zl.=YT, Zc=Yc , R=S and T=S/2. Substituting above

information into (198), (201), (202) and (209) to calculate F, and Fij, the strength

tensor for any complex stress state can then be obtained and compared with the actual

stress tensor. Failure is assumed to occur when the magnitude of the actual stress

tensor exceeds that of the strenth tensor.

Transverse Cracking

Based on the stress field calculated from the continuous traction Q-23 element, the

four failure criteria discussed in 6.3.2.1 were applied to every point along the

traction-free edge for all five laminate specimens at the strain levels shown in Table

(5), respectively, when the first sight of transverse cracking was detected. The results
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'I'able 5: TIest Results for [(;j 6 )2 9()], Lamilate

5e1 25 35 45

Transverse Strain Ml. 0.493 0.326 0.301 0.351 0.532

cracking Stress (ksi) 69.7 39.6 29.1 20.5 15.9

Delamination Strain M7. 0.697 0.383 0.336 0.406 0.620

Stress (ILsi) 99.3 46.7 30.8 23.9 18.2

---- -----------
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are shown II IOUres (61)((05) along with (hou's 150] predictions. Those points that

lie in the recion \vhere the actLIna stress to-strenth tensor ratio is greater than unity

represent failure. Due to the discrepancy of the calculated stress field based on

different numerical schemes, the prediction of the lamina failure surface from the same

failure criterion (such as Tsau-Wu theory) varied significantly through the laminate

free-edoe. An obvious failure phenomenon resulting from the transverse cracking

",oithin lie 9)d%,ree layver \\as detected based on the continuoLIs traction Q 23 element

ti ,li the laminait specimens. At the same ime, inltljtion of edge delamination at

lie intI t rat es hc I\\ cen1 0 and -0 become app rc, .as t he ',atIle of 0 increases. \\ hich

'A a 1 n,1t ind iaited accord ing to (hou'S analysis. lowever, the fact that trans\erse

cracks alxsays occurred prior to delamination in all cases is noticed, and this indeed

matches experimental observation [51]. Here, it is noted that the magnitudes of

stress-to-strength ratios shown in these figures sometimes departed significantly from

unity particularly in the interior of transverse layer and near the interfaces. This

could possibly be due to the inaccurate insitu transverse strength data and the

inappropriate assumption of the interlaminar strengths.

Edge Delamination

I:o1 lli 1 inC tliec same pr ceduIre ;as in the prediction of transverse cracking, maximum

stress, maximum strain, I loll man and Tsai-\\uI crileria were applied to every point

along the free-edge of various laminate specimens at the respective strain level

correponding to the onset of delamination. For illustration, failure surfaces predicted

from the continuous traction Q-23 element for 0=50 and 0=25' laminate specimens are

shown in Figures (66) and (67). In the case of 0=5', Figure (66) shows that

hollowing the transverse cracks formed in The 90)degree layer, delaminations wvere
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de\ eloped at the interfaces bet\\ een 5, 5 layers. Meanvhile. transverse cracks also

extended to the angle-ply layers under incremental loading. The fact that all the

failure surfaces exceeded unity shown in Figure (67) might result from the inaccurate

material strength data. For the 0=25' laminate, however, transverse cracks were still

confined to the 90-degree layer as delamination propagated at the 25/-25 interfaces.

Based on these observations, we can infer that fiber orientations of the laminates wvith

tlte ale stackin ,seuce hi",e pl, \cJ ani irlpr'l~t role on tile determiition of

(1a111;12C unde i der inLlcln TA:lti l,.dill,.

In clea . the I Iinlman hvCr\ had mori fLnser;\ati\e predictions than tile other,,

on the initiation (A transverse cracking \vith in Oh 9(0-deoree layer, and the inaximun

strain criterion predicted conservatively on tile subsequent edge delamination at the

interfaces between angle-ply laminae. Since the materials were assumed linear elastic

in the analysis, the applied strain loading corresponds to the onset of transverse cracks

or delamination based on the continuous traction Q-23 model, and the failure criteria

would be expected to be lower than the experimental observation. Ilowever,

throughout the analysis, delamination was assumed to occur in a state of generalized

plane strain without the influence of transverse cracking. In reality, this is not the

case. More work needs to he done to study the interrelationships between delamination

and other damage modes such as mantrix cracking and fiber breakage. etc. Also, many

practical composite systems actuallY exhibit extensive nonlinear mechanical resx)nse in

shear and transverse to the reinforcement, resulting in nonlinear laminate mechanical

behavior. Extension of the present continous traction finite element procedure to

include nonlinear material behavior, along with careful determination of material

properties and strength data, may lead to better estimation of initiation of various

damage modes under incremental loading.
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SECT'ION V11

DISCUSSION

[ic prohlem) of I ree-eCeIO dehICITIIT~thl II o ,nl I'n Ip siL' LIlite CLIP01W sLhjcedk It,

ii ~ ~ ~ ~ ' t! IL 111,1 1 Illfl %% Ic ' 1i cl 0\CW I~. L c U~ 1 t i 1n 1 pI L 111J'

~r ItIId k1\ O HCIV IIIC IIlIL the m I C . 1~ nth I I I(-T 1 111 1 1 'C : . 1, 11C, r ', r . 11,% C% \ %\I\ In ic

St re~Ss I)elId un11d CI-r tli IsitLI iIn)1 1, 1' l 11t l \ l I III ) ill 11 LI !ur:. I 'ie s e heIII anlisotro-0pI'

and heterogeneityv of' tile material s.,,stem. mnd presence of' the traction-f'ree boundar)

makes the analYsis dlifficult. Literature on this stjh~ect was abundant but an effective

as well as reliable solution had not been Ciund.

The present research effort has resulted in de\ elopemient of a continuous strain

finite element model in plane elasticitly balSed onl thle compatible cubic interpolation

f'unction proposed bly Cloueii and I e1ippat [40], in v Ii ,h the normal slope continuitY

w\as enlsured atrO.SS thle ImI~t rle1Ine t1)l m, FI Cd HOlicC0continuouIS strain mlodel

TOII lI,- ;iiilVM )I5 iii a ' etL'L IVo dinieni-n Il I rct:c l !c dtciamnination couIpon Uinder

unil ormi extension, a COntIuOuIs straJIn i ield a 0111- hkithi in plane and t ransx erse direct ion.,

was obtained. Hlowever, due to material anisotropy, thle stresses along the interf'aces

between differently oriented layers wvere discontinuous. Also, traction-free boundary

was not satisfied. The continuous strain model wvas used as the basis for thle

developemnent of' a continuous traction f'inite element proedure. Knowing the fact that

the di splacient Field within each e1lment I, decLribed bv nodi I Isp1"lacement

1 s')



OIill [I Mlflts Idli Iit'ir I- VIh-'I I IIII. t, I (!!I C It, t IkI (Oil I Ifl Uirt v. a1 t ra nsf-orrrat ion pro(cedii re

%-%as det~ehoped It na The ,radivnts normal ti c lcniw 1101.ldarV to a mixed Set 01

degrees of' freedom tillOIroul appropriate diSpld1cemelnt-StreS% relationships. F:or g lobal

assembly, thle nodal degrees of freedom of' this element include interlaminar Stress

components at tile corner nodes, as well as traction components at the mid-side nodes

of' each element. This ensure% continuitY of' dis;placement and traction along,

IWiLICeCemenil h'undolrIes .i, \\ ul IIISi I isI I ai I ,,t c iterfaIc es protidint' a smiall

dt:1 m~ ',1.1101 P,\at iIlk:deed ,,I Ill sm Tille. equilibrim (Ondithi~l IN

ni~me c ~cr ' dilatent c eitsl (Il.\ers). -\signif'icant *spect ol hI

Lll1f1hI.Lellkeilt 1)Ixied lo lat1- n1111 is 11A i. 1110\\ S tIrat on f ree bo)undarY conditions" to he

spe:,fied ifl a point vise seinse.

In thle four-ph'y laminate analysis, numerica! results calculated from the continuous

traction Q-23 element generally agreed wvell with Pagano's analytical solutions [8]

although these two schemes were based upon quite different theories. For illustration,

Table (6) outlines the basic characteristics associated w\7ith each of these approaches.

)ne approx~mate .solutions for stress components r,\ and or,whc plya imotn

role in delamination of' composite laminates, were calculated using both approaches and

Inn nd to hitve Si m ilar distribution. T[he study also revealed that the pattern of mesh

refinement r had Sitrn fica nt effect onl thle estimates of' interlaminar stress field in thle

vicinityv of traction-free edge or near the interf'ace between two differently oriented

layers. Here, it is essential to realize that the continuous traction finite element

procedure is only applicable to the Q-23 element and cannot be simplified to Q-15 and

Q-19 elements. This is because the continuity of traction across laminate interface

cannot be simplified in thle absence of' mid-side nodes at the interface between two

100o



'lable 6: ("onipa nron (1 Ilaiaino's Tlheorvy and ( onntin uouS ''raction Q-23 Element

Method Pagano Continuous traction Q-23

Variational Reissner's variational Minimum potential
principle principle energy principle

Type of formulation Mixed Displacement

Basis of field
equations Plate theory Elastic solid

Assumed inside each K[inematic relations Kinematic relations
laver (element) & Stress equilibrium & constitutive la.-

Along interlaminar Continuous traction Continuous displacement
boundary & "eighted displacement & traction

Assumed stress Inplane---linear Quadratic
w.r.t. Z-a:.:is Transverse---cubic

Unknowns in final Weighted displacements Displacements
equations & interlaminar stresses & interlaminar stresses

Solution technique Direct solving Finite element method
differential equations
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adjacent layers. In cOnpa risn w ith ite continuous strain Q-23 element, the

irtrOduction of the transtormation process in the Q 23 element makes the continuous;

traction procedure more expensive. llowever, tile continuous traction Q-23 element

significantly improves the reliability of the stress field solution because of the

interlaminar stress continuity at the interface between differently oriented fiber layers,

along with satisfaction of' traction-free bounda ry condition along specimen edges.

A-ppl ic It ll to liC U nIt Ipl lain t tC spc iiens with stacking sequence of

I () -f).. 1(),, ,I I rther llurcd l iC pottial 0I tihe rOtinuouts tra1ction finite cnlent

pi.0tcdure in tile li\ .is, 1 edge lc'l;rlltin probhleln. Salislactoly illcrent .lellt \,as

Lcnera ]\ ohser\cd ttor interlai ina stress d istrill tions as \Vwell as laminate displacemelnt

field bet\een continuous traction Q-23 element and constant strain element solutions

[44] except that, in the vicinity of the free-edge, the constant strain element was

deficient due to nonsatisfaction of traction-free boundary condition (rs =O) and the

assumption of (T-,=O) imbedded in the axisymmetric analysis. The results from the

continuous traction Q-23 element would be expected to be superior to the const,.nt

strain element (conventional assumed displacement elements) for prediction of stress

field in the free-edge delamination specimens. Of course the simple axisymmetric

model is economical to use.

Regarding prediction iif damage initial ion in laminate composite coupons.

[(O/-O),/90],, under incremental loading, the continuous traction finite element procedure

along with some popular anisotropic failure criteria was found to be successful in

modelling some failure phenomena observed in the experiments. Basically, the laminate

specimens under analysis were assumed to be made of linear elastic brittle materials.

Thus. initiation of delamination directly led to catastrophic laminate failure regardless
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of the damage accumu lation process. Numerical experiment discussed in the last section

re\ ea led that the 1 loffIman criterion had a more conservative prediction on the

initiation of transverse cracking vithin the 90-degree layer, and the maximum strain

criterion on the subsequent edge delamination between the angle-ply laminae interfaces.

In summary, we conclude that the proposed continuous traction finite element

scheme not only overcomes the drawback of deficient stress calculation arising in the

fl \entiona W sun ed d isplacenien( approach. hut also provides a reliable as xwell a,

ctl eTi\e numeri,,l sutim pr,,Cedore %\ilh a \.der 1 ragfle of a pplicability to lit

anl sis of t)e lIrcecIte de],nuijil~ lhn problm I. lhOLI based on a conpllecl\

different varialional formulation, this model has shared the characteristic of conlinUous

displacement as well as traction fields across laminate interface, with llagano's

approximate theory derived from a mixed formulation. Though developed for

evaluation of stresses in composite laminates, the continuous traction procedure is also

applicable to analysis of layered media involving material interfaces where a

two-dimensional or pseudo two-dimensional repre';cntation is applicable. This would

include stresses in layered airfield and highway pavements, pressures on tunnel lining,

etc.

... ........................................... ... . .. ... . ..
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Appendix A

DERIVATION OF COMPATIBLE CUBIC

INTERPOLATION FUNCTIONS

l'hi'n ,wppcndi, coilins ;I sk!i nm jr ol I elipp,', 1-41.12] approach in deriving the

Uhh. wllptilde intelpolitiolls for in-plane di,,pl.cenent u in t more detailed format.

In I'der to deri \ e the cubic interpolation I unctions for the complete t rianvu Ia

clement, three dillerent coordinate systems, i.e. triangular coordinate, local and global

(;artesian coordinates should be defined as illustrated in Figure (A.1). The geometry of

an arbitrary triangular element can be expressed in a Cartesian coordinate system by

its nodal coordinates or its projected dimensions as shown in Figure (A.2), or

alternately by its intrinsic dimensions as defined in Figure (A.3).

Let . and k denote the first and second cyclic permutations of i=1,2,3 (i.e. j=2.3,1

and k=3.1.2), the projected dimensions may be vritten ias

a =\ -x h=y - (A.1

Also, the intrinsic dimensions may be defined in terms of the projected dimensions.

Referring to Figure (A.2), define

d(I

A (A.2)
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(X3,YS) A total area

I , (i= 1,2,3)
52 1 A

In
2

A2  A
3~ A]

S1

(x 1 ,y) ss(XrY2)

n,

Vi-ure .I:. 'IrlinvuI~,r. Iou-id1 and (lj]lj ('.rttjsian (?(orchnite.s

10(9



(x3,Y3)

(x1,x 1) 3

I'I Ure A.2: \-Y' ProjeLted Dimensions
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d3

Fit'urt: A*.3: Inl rinsic Ijien,ions
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1= -A (A.3)

(a a +hb).)
I I (A .4)

The triangular coordinates ,., of anyv point 'T" in the triangle may be defined

Cither its the rAos of, the areas A, of the sabi rianvles subtended bY the point to the

iotaI rc A of tht: tinnle. or as, the ratios of1 thc normnal distances n, to the liclhY1

hi. I'

A - 1(A1

A h

as shiown in Figure (A.1). It is noted that the triangular coordinates are related by

the constraining condition ~+2~~

With reference to Figure (2), the displacement interpolation functions for each

suhelement (0) express the relationship bet-ween the displacement u"' wvithin the element

and the ten displacement components of' its nodal po)ints r'' as follows

U, A6

For example, the nodal displacemer . vector for subelemient 1 is

IrI"=lu.u ,u ,u 'U' ,u v,1u,U,,u 'U. A. 7

The correspond i n ten (uhi interpoxlation fu ncitions expre1sed in triangular coordwiaes are
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'' 2 r ')+' 1  1

, a I -a1 I ) 1 1

2 I) (j) j
2, al 1 ,) -a () ) a ) 1) .. . .
2-(h2 1 -hi )+(h''A 3 -,3

-341

\here the subsc-ripts correpond to the renumbered nodes of' the subelement. ,nd , are

the local triangular coordinates of x)ints in subtriangle 1. With this convention, the

interpolation functions for subelements 2 and 3 are the same as (A.8) appropriately

permuting the subscripts and superscripts. It should be noted, however, that the nodal

displacements in (A.6) are identified by node numbers defined for the complete element

assem bl y.

It the \ector r OF aIll nodal displacements of thle compllee clemenl t as'Sm h1% IS

\\ritllen ias the ordered ,et

IiU .u * U , , .U , .U ,U U u .U ,U ,t1 ul * ,u

the displacement in subelement 1 can be expressed as

I II .I jr
,[ ). *\.1 )
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\\ here il ' is similar to (A.8). but ex panded \. ith 5 /eros to account for the nodal

displacements no associated with su)elelent 1. and \\ It h a ppropriate arrangement of

terms. The vectors {..1 and {oll represent the 1terpolation functions for the

external and internal nodal displacements respectively.

Expressing the displacements in the olher subelements similarly, the complete

s\stem of displacements can he 'riwten as

Li I

(A.11) is an expression of the cubic displacement patterns in the three subelements.

The displacement of two adjacent subtriangles are identical along their common

boundary. The normal slope at any of these nodes (,say 7 of subelement 1) is given

by

r
u ). = ® = h. : -, (A.1 2)

an r

, here b(1 h; respecti\e!N are values of _____ {", at node 7 for subeiement 1,7, 7.On On

and n denotes the axis normal to the element boundaryN To maintain internal slope

continuit, it is necessary that \,',=- where the negative sign results from the

convention that the positi\ t normal is directed outL\kards. [or the three point, 7. 8. 9.
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e2 O~ +b4 b +b r

S S he Is" hoS

k34+0, 2 b ()+b (2 b )+b 2

or symbolically

r

-i Ili - =o1

r

The val ues of' r, vhich ,villI satisly these conipat ibilIityv condition,. a re ohiiiined I'.

solving (A.14), i.e.

r,=-BO fir =,r (A-15)

Substituting the slope continuity constraint of (A.15) into (A.1 1), the fully compatible

displacement field in the three subelements becomes

.2 ) + 6 ,2 1 . r = ( 2

u 3jk 31. 10 . Id(A16

E~xplicit expressions of' these functions for Nuhelenient 3 are
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( u(3)= 2(a32-a 3) a3 _a )t1x 3t -2 31

+ _t 2[3(2a -ai 3 -a X 2 ) + 3(a -a 3 / 3 ) 2+(-3a +2a 3 3 +a 2X2) 3]

1'

- (3-2 + b I 3(l-- 1 ,+(2 -3

su (3)= (2(a -3 a3 )+(a2_a X )(, .
x 2 

~t t 23AtA

+ t3(a X 3 -a 2 )t +3(a i +a 3 x 3 -2a 2 ) 2+(3a 2-a -2a

(3)= 2(b 3 1 43 )+(b 3X -b)t j2 3

+ ' ,(3( I + X ,) +.(1 ++2 ),(3+( 1-p),-,, )2 A

6 1 +a~+ ) - 13X +a+1 31 ).a 1 1 a~) 3
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4u.(3) = 1 2 [3(b +3b, +bbb l) _(bX b 1)U31

UN' 6 3 1

3

A 2(
31,

The above set of interpolants is applicable to all points lying in subtriangle 3. For

points lying in subtriangle 1 and 2, { j'), {4(2)j} can be written down by cyclic

permutation of all subscripts and superscripts in (A.17). All the symbols on the right

side of (A.17) relate to the complete triangle.
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LIST OF SYMBOLS

A list of the most commonly used symbols and their general meaning follows.

a, ) Global dimensions of it t'ian le

A Area of triangle

A Area of subtriangle i

II Material constants

C 3Components of the stiffness matrix in the
global coordinate system

C. Components of the stiffness matrix in the

material coordinate system

S. Components of the compliance matrix in the
Ii

global coordinate system

S Components of the compliance matrix in the

material coordinate system

Ii Components of the transformed reduced
stiffness malrix

Q, (omponents of tht reduced stiffness matrix

d IProje(tion of a corner of a triangle over opposite side

D11) Inversion of' Q,

), I) -I) omponen ts of t educed material

colli pl Ia lict n i lix

£ You n d u.,' n It7i

17S



('i'!'eSi Ll', ItI) sll tS 0 1 Ic its\ torce \ector

hi "lriang to hit Ihts

1I Lamina thickness

K llements of Stiffness matrix

Triangle side lengrts

\ "Nt~l\rin~1tl o 1)o Undrv

. 1 .inear operator or matrix of linear operators
on a region R

(C ].lineitr opcriitor or matlix of lillal Opel1a1or

on the hotildar\ o! R

I) )Domain of operator -\

n-dimensional liucidean space

R Open connected region in F"

S Boundary of R

SI' S2 Complementary subset of S

RZ Closure of R

11.local cartesian coniponents of the unit

normal t a surrace

I ocal ta rlesian componenlIs ot the unit

ianvenliai to a surfate

1 (ipen connecled suh)re 1n of R

aOR Boundary of subregion R

o- (Tartc;ian components of The stress tensor

u (Ca rtesima cornpent,, tof ti displacemei;t ,ector

(Irt-hl t' pollell
, 

ot ile tracton \t -hor
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t (>rtitesian cornponen, osfu the premcrihed

t raction vector

kronecker's delta

I (1k ICartesi~n components of the isothermal

elasticity tensor

Interpolation functions

1, A ssu med dispLacemicnts inI clement m

Assumed venler-A i/cd nodal displacements; at the
1)xMnldarY ofClcnentI II

A-ssumed eneraI i/ed nodal dslemnsInternal
to element III

ell Vector of' strains in element mi derivini2 from u"

1K Stiffness matrix

F Load vectors

x v z Cartesian coordinates inE3

V Poisson's ratio

G Shear nmduli

E Components of' infinitesimal or linear Strain tensor

Natural coordinate

0' Rotation angle From global axis x
to material axis 1

T Transformation matrix

e,) Applied uniform strain loading

u IDisplacement component in x-direction

v Displacement component in y-direction

w l~isplacenmen t cornponent in z-d irection
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U Displacement function in x-direction

V Displacement function in v-direction

W Displacement function in z-direction

0 fiber orientation

Geometric parameters

Linear functional

O J)isplacement-stress transformation matrix for corner node

It, I. Displacement-stress transformation matrix for mid-side node

BR Bilinear mapping on V\XV,

l Coordinate transformation tensor
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